簡易檢索 / 詳目顯示

研究生: 傅崇德
Fu, Chung-Te
論文名稱: 利用布氏模式模擬非線性水波通過規則底床之研究
Simulation of Nonlinear Wave Propagating Over Periodic Seabed by Multi-layer Boussinesq Model
指導教授: 黃煌煇
Hwung, Hwung-Hweng
學位類別: 碩士
Master
系所名稱: 工學院 - 水利及海洋工程學系
Department of Hydraulic & Ocean Engineering
論文出版年: 2007
畢業學年度: 95
語文別: 中文
論文頁數: 76
中文關鍵詞: 布氏模式非線性
外文關鍵詞: Boussinesq model, Nonlinear
相關次數: 點閱:89下載:3
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究主要是以Lynett & Liu(2004)所提出之多層型式之Boussinesq方程組為數值模式基礎,模擬正向規則波通過週期性系列潛堤時的情形。模式先以單層及雙層初步探討差異情形並與實驗比較。為探討堤前波浪反射現象時,考慮波浪因非線性效應所產生的高頻成分波,以三種分析方法求其反射率並予以討論之;另外於潛堤後方設立垂直壁面,模擬當布拉格共振發生時,堤後距離與波能變化的關係。由結果發現:模式驗證非線性效應需要空間成長,因此數值水槽若設計為短尺寸水槽,則多層之間水位波形並無明顯差異,因此本文的數值方法乃使用單層型式探討。而探討堤前反射率時發現,在2S/L約為0.5的位置時因波浪條件較為非線性,使得能量傳遞至高頻處,而倍頻成分波因為其波長恰落在形成共振的區間,因此使得整體反射率提高。另外也可以發現由於非線性效應的影響使得堤後出現一長波,此結果與Webster & Wehausen(1995)的結果類似,並且在Davies & Heathershaw(1984)中的實驗結果中也可以發現類似的現象。其次,改變潛堤與垂直壁距離的結果可知,佈置垂直壁面時,潛堤後方亦呈現類似駐波的現象,且駐波之振幅變化與壁面和潛堤之距離有關,呈現一週期性變化,峯值間距為L/2,波浪在潛堤與垂直壁面間來回振盪造成能量的累積,這個現象在垂直壁面改為一坡度1:2的斜面進行數值模擬時依然存在,而垂直壁上的波高量測值於某些特定位置時會是原入射波高的數倍以上,因此人工系列潛堤對於海岸的保護性仍然有討論的空間。

    Numerical experiments based on multi-layer Boussinesq model developed by Lynett & Liu (2004) were performed to study nonlinear wave propagating over periodic seabed. In particular, one-layer and two-layer models were carried out and the results are compared with experiment data. No visible difference between one-layer and two-layer is found. Furthermore, reflection coefficients due to submerged bars for nonlinear wave are analyzed using three different methods. Amplitude evolution is also presented.
    In the case of larger incident waves with no obstacles behind the rippled bed, it is found that nonlinear effects would cause amplitude modulation spatially. This result is identical to the finding of Webster & Wehausen(1995). In addition, the energy variations for the cases where the vertical wall is set behind the submerged bars are discussed. It is found that the wave amplitude at the vertical wall can be as large as 5 times of the amplitude of the incident wave, indicating that the idea by using artificial periodic bars to protect the shoreline may need further consideration.

    摘要 Ⅰ ABSTRACT Ⅱ 致謝 Ⅲ 目錄 Ⅳ 表目錄 Ⅵ 圖目錄 Ⅶ 符號說明 Ⅹ 第一章 緒論 1 1-1 研究動機與目的 1 1-2 前人研究 3 1-2.1 Boussinesq方程式 3 1-2.2 布拉格反射 7 1-3 本文組織 9 第二章 理論基礎 11 2-1 布氏方程式 11 2-2 反射率的計算 15 第三章 數值方法 21 3-1 空間項的處理 21 3-2 時間項的處理 21 3-2.1 單層Boussinesq方程式 22 3-2.2 雙層Boussinesq方程式 23 第四章 模式驗證與數值佈置 28 4-1 模式驗證 28 4-1.1 波形驗證 28 4-1.2 使用多層模式模擬非線性效應之差異性驗證 29 4-2 數值佈置方法 35 4-2.1 計算堤前反射率 36 4-2.2 潛堤後方波能變化的探討 38 第五章 結果與討論 41 5-1 堤前反射率計算 41 5-2 堤後波能變化的探討 62 第六章 結論與建議 72 6-1 結論 72 6-2 建議 73 參考文獻 74

    1.Boussinesq, J., “Theorie des ondes et ramous qui se propagent le long dun canal rectangularire horizontal, en communiquant au liquide contenu dansce canal des vitesses sensiblement pareilles de la surface au,” Journal of Mathematical Pure et Application, 2nd Series, Vol. 17, pp. 55-108 (1872).
    2.Beji, S. and Battjes, J. A., ”Numerical Simulation of Nonlinear Wave Propagation Over A Bar,” Coastal Engineering, Vol. 23 , pp. 1-16 (1994).
    3.Davies, A. G. and Heathershaw, A D., “Surface propagation over sinusoidally verying topography,”Journal of Fluid Mechanic, Vol. 144, pp. 419-446 (1984).
    4.Gobbi, M. F., Kirby, J. T. and Wei G., “A fully nonlinear Boussinesq model for surface waves. Part2. Extension to O(KH)^4,” Journal of Fluid Mechanics, Vol. 405, pp. 181-210 (2000).
    5.Goda, Y. and Suzuki, Y. , “Estimation of incident and reflected waves in random wave experiment,” Proceedings of the Fifteenth International Conference on Coastal Engineering, ASCE, Hawaii, pp. 628–650 (1976).
    6.Kirby, J. T. and Anton, J. P., “Bragg reflection of waves by artificial bars, ”Proceedings of the Twenty-second International Conference on Coastal Engineering, ASCE, New York, pp. 757-768(1990).
    7.Kirby, J. T., “A general wave equation for waves over rippled beds,” Journal of Fluid Mechanics, Vol. 162, pp. 171-186 (1986)
    8.Lin, C. Y and Huang, C. J., “Decomposition of Incident and Reflected Higher Harmonic Waves Using Four Wave Gauges,“ Coastal Engineering Vol. 51, pp. 395-406 (2004)
    9.Lynett, P., “A multiplayer approach to modeling nonlinear, dispersive waves from deep water to the shore,” Ph.D thesis, Cornell University, Ithaca, New York (2002).
    10.Lynett, P. and Liu, P. L.-F., “A numerical study of submarine landslide generated waves and runup,” Royal Society of London A in press. (2002).
    11.Lynett, P. and Liu, P. L.-F., “A two layer approach to wave modeling,” Philosophical Transactions of the Royal Society of London, Series A, Physical Science and Engineering, A460. pp. 2637-2669 (2004).
    12.Mansard, E.P.D. and Funke, E. R., “The Measurement of Incident and Reflected Spectra Using a Least Square Method,” Coastal Engineering, Vol. 17, pp. 154-172 (1980)
    13.Madsen, P. A. and Sørensen, O. R., “A new form of the Boussinesq equations with improved linear dispersion characteristics. Part 2: A slowly-varying bathymetry,” Coastal Engineering, Vol. 18, pp. 183-204 (1992).
    14.Miles, J., “Oblique Surface-Wave Diffraction by a Cylindrical Obstacle,” Dynamics of Atmospheres and Oceans, Vol. 6, pp. 121-123 (1981)
    15.Nwogu, O., “An alternative form of the Boussinesq equations for modeling the propagation of waves from deep to shallow water,” Journal of Waterway, Port, Coastal and Ocean Engineering, ASCE, Vol. 119(6), pp. 618-638 (1993).
    16.Peregrine, D. H., “Long waves on a beach,” Journal of Fluid Mechanics, Vol. 27(4), pp. 815-827 (1967).
    17.Raichlen, F. and Ippen, A. T., “Wave induced oscillations in harbors,” Journal of the Hydraulics Division, ASCE, Vol. 91, No. Hy. 2, pp. 1-26 (1965).
    18.Stokes, G. G., “On the theory of oscillatory waves,” Trans. Camb. Philos. Soc., Vol. 8, pp. 441-455 (1847).
    19.Schäffer, H. A. and Madsen, P. A., “Further enhancements of Boussinesq-type equations,” Coastal Engineering, Vol. 26 pp. 1-14 (1995).
    20.Webster, W. C. and Wehausen, J. V., “Bragg scattering of water waves by Green-Naghdi theory,” Z angew Math Phys 46 Specil Issue, pp. S566-5583 (1995).
    21.Witting, F. M., “A unified model for the evolution of nonlinear water waves,” Journal of Computational Physics, Vol. 56, pp. 203-236 (1984).
    22.Wei, G. and Kirby, J. T., “Time –dependent numerical code for extended Boussinesq equations,” Journal of Waterway, Port, Coastal and Ocean Engineering, Vol. 121, pp. 251-263 (1995).
    23.Wei, G., Kirby, J. T., Grilli, S. T. and Subramanya, R., “A fully nonlinear Boussinesq model for surface waves. Part 1. Highly nonlinear unsteady waves,” Journal of Fluid Mechanics, Vol. 294, pp. 71-92 (1995).
    24.Wei, G., Kirby, J. T. and Sinha, A., “Generation of waves in Boussinesq models using a source function method,” Coastal Engineering, Vol. 36, pp. 271-299 (1999).
    25.張憲國、許泰文、李逸信,「波浪通過人工沙洲之試驗研究」,第十九屆海洋工程研討會論文集,台灣台中,第242-249頁 (1997)
    26.張憲國,「人工沙洲形狀對波浪反射率之影響」,港灣技術第十二卷,第23-38頁(1997)
    27.周世恩「Boussinesq方程式應用於波浪通過人工沙漣之研究」,國立成功大學碩士論文 (2003)
    28.林鼎傑,「高階Boussinesq模式於港池振盪之數值模擬」,國立成功大學碩士論文 (2005)

    下載圖示 校內:2008-08-24公開
    校外:2008-08-24公開
    QR CODE