簡易檢索 / 詳目顯示

研究生: 藍元志
Lan, Yuan-Zhi
論文名稱: 具溫度感測補償均流機制之多模組並聯電源轉換器
Multimodule Paralleled Power Converters with Temperature Compensated Current Sharing Scheme
指導教授: 李嘉猷
Lee, Jia-You
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 電機工程學系
Department of Electrical Engineering
論文出版年: 2014
畢業學年度: 102
語文別: 中文
論文頁數: 100
中文關鍵詞: 多組轉換器並聯溫度感測補償自動主僕式均流法
外文關鍵詞: Multimodule paralleling converters, Temperature compensated, Automatic master slave current sharing method
相關次數: 點閱:85下載:4
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文旨在研製多組電源轉換器並聯均流系統,其特點在於所提系統具有溫度感測補償均流機制,均流控制方法為自動主僕式均流法。轉換器模組設置上之差異,使模組間散熱能力有所不同,當較難散熱之轉換器模組持續分擔整體系統功率,將可能使該模組故障損壞,故本文提出偵測模組之環境溫度藉以調控模組之均流命令,使溫升較嚴重之模組能減低負擔功率,而在轉換器模組無溫升差異下進行均流控制,使整體系統可靠度增加。最後實作兩組轉換器並聯,其單組轉換器模組輸出規格為48V/10A,單組模組採用兩級電路架構,前級為功因修正升壓型轉換器,後級為相移型全橋轉換器。經實驗驗證在無溫度差異情況下均流誤差可達2%以下,且在模組溫度差異下可調節轉換器模組之分擔能力。

    This thesis focuses on the design and implementation of multimodule paralleled power converters with temperature compensated current sharing scheme, method used the automatic master slave current sharing. The cooling capacity in each of modules is different result from different situations when installed. The module having poor cooling capacity will break down faster than the others. For this reason, the current sharing control method by sensing the temperature of each module is proposed for improving the reliability of system. Finally, the AC/DC 48V/10A power converter module is implemented for verifying the two-module paralleling system. The power factor correction boost converter and the phase-shift full-bridge converter are proposed in the first and second stage respectively per module. According to the results of experiments, the current error between two modules could be controlled below 2%, and the load regulation along with variation of temperature could be verified.

    中文摘要 I 英文摘要 II 英文延伸摘要 III 誌謝 VIII 目錄 IX 表目錄 XII 圖目錄 XIII 第一章 緒論 1 1-1 研究背景與目的 1 1-2 研究方法 5 1-3 論文大綱 6 第二章 功因修正技術與均流控制法分析 7 2-1 前言 7 2-2 功率因數修正技術 7 2-2-1 峰值電流控制模式 10 2-2-2 磁滯電流控制模式 11 2-2-3 平均電流控制模式 11 2-2-4 邊界電流控制模式 12 2-3 電壓下降均流法 13 2-3-1 內部電壓下降法 15 2-3-2 串接電阻電壓下降法 17 2-3-3 回授電壓下降法 17 2-4 主動式均流法 19 2-4-1 主動式均流法種類 19 2-4-2 主動式均流法迴圈設置 22 第三章 轉換器模組均流控制轉移函數分析 24 3-1 前言 24 3-2 相移型全橋轉換器模式分析 24 3-3 相移型全橋轉換器控制小訊號分析 29 3-3-1 全橋轉換器狀態空間平均法分析 29 3-3-2 相移型全橋轉換器之諧振電感對轉移函數影響 32 3-3-3 相移型全橋轉換器轉移函數分析 36 3-4 均流控制小訊號分析 42 3-5 溫度對轉換器模組分析 48 第四章 硬體電路設計 49 4-1 前言 49 4-2 功率因數修正轉換器設計 50 4-2-1 功率元件參數設計 51 4-2-2 電流誤差放大器補償設計 52 4-2-3 電壓誤差放大器補償設計 54 4-3 相移型全橋轉換器設計 56 4-3-1 高頻變壓器設計 58 4-3-2 輸出濾波器設計 59 4-3-3 諧振電路設計 61 4-3-4 怠滯時間與操作頻率設定 64 4-3-5 控制器補償設計 65 4-4 轉換器並聯均流電路設計 67 4-4-1 均流控制晶片內部放大器 68 4-4-2 均流控制晶片參數設計 70 4-5 溫度感測電路設計 71 第五章 電路模擬與實驗結果 75 5-1 前言 75 5-2 功率因數修正器模擬與實驗結果 76 5-2-1 SIMPLIS功率因數修正器電路模擬 76 5-2-2 功率因數修正器實驗波形量測 79 5-3 相移型全橋轉換器模擬與實驗結果 82 5-3-1 SIMPLIS相移型全橋轉換器電路模擬 82 5-3-2 相移型全橋轉換器實驗波形量測 85 5-4 轉換器模組並聯均流電路實驗結果 89 第六章 結論與未來研究方向 94 6-1 結論 94 6-2 未來研究方向 95 參考文獻 96

    [1]H. Chung, S. Y. R. Hui, and K. K. Tse, “Reduction of power converter EMI emission using soft-switching technique,” IEEE Trans. Electromagn. Compat., vol. 40, no. 3, pp. 282−287, Aug. 1998.
    [2]K. H. Liu and F. C. Y. Lee, “Zero-voltage switching technique in DC/DC converters,” IEEE Trans. Power Electron., vol. 5, no. 3, pp. 293−304, Jul. 1990.
    [3]G. Hua and F. C. Lee, “Soft-switching technique in PWM converters,” IEEE Trans. Ind. Electron., vol. 41, no. 2, pp. 241−250, Dec. 1995.
    [4]陳昱凱,雙相交錯式半橋LLC諧振轉換器之研製,國立成功大學電機工程學系碩士論文,2012年。
    [5]B. Mammano, “Distributed power system,” Unitrode Seminar, SEM -900, 1993.
    [6]W. A. Tabisz, M. M. Jovanovic, and F. C. Lee, “Present and future of distributed power systems,” in Proc. IEEE APEC’92, 1992, pp. 11−18.
    [7]S. Luo, “A review of distributed power system part I: dc distributed power system,” IEEE Aerosp. Electron. Syst. Mag., vol. 20, no. 8, pp. 5−16, Aug. 2005.
    [8]J. Perkinson, “Current sharing of redundant DC-DC converters in high availability system- a simple approach,” in Proc. IEEE APEC’95, 1995, pp. 953−956.
    [9]S. Luo, Z. Ye, R. L. Lin, and F. C. Lee, “A classification and evaluation of paralleling methods for power supply modules,” in Proc. IEEE PESC’98, 1998, pp. 221−231.
    [10]B. Choi, “Comparative study on paralleling schemes of converter modules for distributed power applications,” IEEE Trans. Ind. Electron., vol. 45, no. 2, pp. 194−199, Apr. 1998.
    [11]I. Batarseh, K. Siri, and H. Lee, “Investigation of the output droop characteristics of parallel-connected DC-DC converter,” in Proc. IEEE PESC’94, 1994, pp. 1342−1351.
    [12]M. M. Jovanovic, D. E. Crow, and L. F. Yi, “A novel, low-cost implementation of “democratic” load-current sharing of paralleled converter modules,” IEEE Trans. Power Electron., vol. 11, no. 4, pp. 604−611, Jul. 1996.
    [13]R. J. Perreault, R. L. Selders, and J. G. Kassakian, “Frequency-based current-sharing techniques for paralleled power converters,” IEEE Trans. Power Electron., vol. 13, no. 4, pp. 626−634, Jul. 1998.
    [14]F. Musavi, K. A. Haddad, and H. K. Kanaan, “A novel large signal modelling and dynamic analysis of paralleled DC/DC converters with automatic load sharing control,” in Proc. IEEE ICIT’04, 2004, pp. 536−541.
    [15]J. A. Qahoug, H. Mao, and I. Batarseh, “Multiphase voltage-mode hysteretic controlled DC-DC converter with novel current sharing,” IEEE Trans. Power Electron., vol. 19, no. 6, pp. 1397−1408, Jan. 2004.
    [16]D. K. W. Cheng, Y. S. Lee , and Y. Chen, “A current-sharing interface circuit with new current-sharing technique,” IEEE Trans. Power Electron., vol. 20, no. 1, pp. 35−43, Jan. 2005.
    [17]Y. Chen, K. W. Cheng, Y. S. Lee, “A hot-swap solution for paralleled power modules by using current-sharing interface circuits,” IEEE Trans. Power Electron., vol. 21, no. 6, pp. 1564−1571, Nov. 2006.
    [18]侯文傑,並聯直流電源供應器自動主僕均流技術之研究,國立成功大學電機工程學系碩士論文,2004年。
    [19]黃偉明,直流電源轉換器並聯之電流分配控制,國立成功大學電機工程學系碩士論文,2007年。
    [20]葉家佑,數位/類比混合控制多相式低電壓大電流電源並聯模組之研製,國立成功大學電機工程學系碩士論文,2008年。
    [21]L. Rossetto, G. Spiazzi, and P. Tenti, “Control techniques for power factor correction converters,” in Proc. EPE PEMC’94, 1994, pp. 1310−1318.
    [22]R. Redl and B. P. Erisman, “Reducing distortion in peak-current- controlled boost power-factor correctors,” in Proc. IEEE APEC’94, 1994, vol. 2, pp. 576−583.
    [23]C. Zhou, R. B. Ridley, and F. C. Lee, “Design and analysis of a hysteretic boost power factor correction circuit,” in Proc. IEEE PESC’90, 1990, pp. 800−807.
    [24]M. Orabi and A. E. Aroudi, “Different frequency instabilities of averaged current controlled boost PFC AC-DC regulators,” in Proc. IEEE INTELEC’06, 2006, pp. 1−8.
    [25]J. S. Lai and D. Chen, “Design consideration for power factor correction boost converter operating at the boundary of continuous conduction mode and discontinuous conduction mode,” in Proc. IEEE APEC’93, 1993, pp. 267−273.
    [26]J. S. Glaser and A. F. Witulski, “Output plane analysis of load-sharing in multiple-module converter systems,” IEEE Trans. Power Electron., vol. 9, no. 1, pp. 43−50, Jan. 1994.
    [27]J. W. Kim, H. S. Choi, and B. H. Cho, “A novel droop method for the converter parallel operation,” in Proc. IEEE APEC’01, 2001, pp. 959−964.
    [28]Y. Huang and C. K. Tse, “Circuit theoretic classification of parallel connected dc-dc converters,” IEEE Trans. Circuits Syst. I, Reg. Papers, vol. 54, no. 5, pp. 1099−1108, May 2005.
    [29]B. T. Irving and M. M. Jovanovic, “Analysis, design, and performance evaluation of droop current-sharing method,” in Proc. IEEE APEC’00, 2000, pp. 235−241.
    [30]C. Jamerson, T. Long, and C. Mullett, “Seven ways to parallel a magamp,” in Proc. IEEE APEC’93, 1993, pp. 469−474.
    [31]C. S. Lin and C. L Chen, “Single-wire current-share paralleling of current-mode-controlled DC power supplies,” IEEE Trans. Power Electron., vol. 47, no. 4, pp. 780−786, Aug. 2000.
    [32]K. Siri, C. Q. Lee, and T. F. Wu, “Current sharing control for parallel connected converters: part I,” IEEE Trans. Aerosp. Electron. Syst., vol. 28, no. 3, pp. 829−840, Jul. 1992.
    [33]Y. Panov, J. Rajagopalan, and F. C. Lee, “Analysis and design of N paralleled DC-DC converters with master-slave current-sharing control,” in Proc. IEEE APEC’97, 1997, pp. 436−442.
    [34]P. Li and B. Lehman, “A design method for paralleling current mode controlled DC-DC converters,” IEEE Trans. Power Electron., vol. 19, no. 3, pp. 748−756, May 2004.
    [35]V. Vorperian, “Simplified analysis of PWM converters using model of PWM switch part I : continuous conduction mode,” IEEE Trans. Aerosp. Electron. Syst., vol. 26, no. 3, pp. 490−496, May 1992.
    [36]V. Vorperian, “Simplified analysis of PWM converters using model of PWM switch part II : discontinuous conduction mode,” IEEE Trans. Aerosp. Electron. Syst., vol. 26, no. 3, pp. 497−505, May 1992.
    [37]J. R. Lee, H. H. Cho, S. J. Kim, and F. C. Lee, “Modeling and simulation of spacecraft power systems,” IEEE Trans. Aerosp. Electron. Syst., vol. 24, no. 3, pp. 295−304, May 1988.
    [38]J. Mahdavi, A. Emaadi, M. D. Bellar, and M. Ehsani, “Analysis of power electronic converters using the generalized state-space averaging approach,” IEEE Trans. Circuits Syst. I, Fundam. Theory Appl., vol. 44, no. 8, pp. 767−770, Aug. 1997.
    [39]S. R. Sanders, J. M. Noworolski, X. Z. Liu, and G. C. Verghese, “Generalized averaging method for power conversion circuits,” IEEE Trans. Power Electron., vol. 6, no. 2, pp. 251−259, Jan. 1991.
    [40]V. Vlatkovic, J. A. Stabate, R. B. Ridley, F. C. Lee, and B. H. Cho, “Small-signal analysis of the phase-shifted PWM converter,” IEEE Trans. Power Electron., vol. 7, no. 1, pp. 128−153, Jan. 1992.
    [41]V. J. Thottuvelil and G. C. Verghese, “Analysis and control design of paralleled DC/DC converters with current sharing,” IEEE Trans. Power Electron., vol. 13, no. 4, pp. 635−644, Jul. 1998.
    [42]J. Sun, Y. Qiu, B. Lu, M. Xu, F. C. Lee, and W. C. Tipton, “Dynamic performance analysis of outer loop current sharing control for paralleled dc dc converter,” in Proc. IEEE APEC’05, 2005, pp. 1346−1352.
    [43]J. Sun, “Dynamic performance analyses of current sharing control for DC/DC converters,” Ph. D Dissertation, Virginia Tech, Blacksburg, 2007.
    [44]J. Rajagopalan, K. Xing, Y. Guo, F. C. Lee, and B. Manners, “Modeling and dynamic analysis of paralleled dc/dc converters with master-slave current sharing control,” in Proc. IEEE APEC’96, 1996, pp. 678−684.
    [45]Y. Panov and M. M. Jovanovic, “Stability and dynamic performance of current-sharing control for paralleled voltage regulator modules,” IEEE Trans. Power Electron., vol. 17, no. 2, pp. 172−179, Mar. 2002.
    [46]M. S. Cooper, “Investigation of Arrhenius acceleration factor for integrated circuit early life failure region with several failure mechanisms,” IEEE Trans. Compon. Packag. Technol., vol. 28, no. 3, pp. 561−563, Sep. 2005.
    [47]L. Dixon, “Average current mode control of switching power supplies,” Untirode Application note, U-140, pp. 356−369, 1990.
    [48]UCC3895 Datasheet, Texas Instrument, 2013.
    [49]J. A. Stabate, V. Vlatkovic, R. B. Ridley, F. C. Lee, and B. H. Cho, “Design consideration for high-voltage high-power full-bridge zero-voltage switched PWM converter,” in Proc. IEEE APEC’90, 1990, pp. 275−284.
    [50]UC3902 Datasheet, Unitrode, 1999.

    下載圖示 校內:2017-07-30公開
    校外:2017-07-30公開
    QR CODE