| 研究生: |
藍元志 Lan, Yuan-Zhi |
|---|---|
| 論文名稱: |
具溫度感測補償均流機制之多模組並聯電源轉換器 Multimodule Paralleled Power Converters with Temperature Compensated Current Sharing Scheme |
| 指導教授: |
李嘉猷
Lee, Jia-You |
| 學位類別: |
碩士 Master |
| 系所名稱: |
電機資訊學院 - 電機工程學系 Department of Electrical Engineering |
| 論文出版年: | 2014 |
| 畢業學年度: | 102 |
| 語文別: | 中文 |
| 論文頁數: | 100 |
| 中文關鍵詞: | 多組轉換器並聯 、溫度感測補償 、自動主僕式均流法 |
| 外文關鍵詞: | Multimodule paralleling converters, Temperature compensated, Automatic master slave current sharing method |
| 相關次數: | 點閱:85 下載:4 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本論文旨在研製多組電源轉換器並聯均流系統,其特點在於所提系統具有溫度感測補償均流機制,均流控制方法為自動主僕式均流法。轉換器模組設置上之差異,使模組間散熱能力有所不同,當較難散熱之轉換器模組持續分擔整體系統功率,將可能使該模組故障損壞,故本文提出偵測模組之環境溫度藉以調控模組之均流命令,使溫升較嚴重之模組能減低負擔功率,而在轉換器模組無溫升差異下進行均流控制,使整體系統可靠度增加。最後實作兩組轉換器並聯,其單組轉換器模組輸出規格為48V/10A,單組模組採用兩級電路架構,前級為功因修正升壓型轉換器,後級為相移型全橋轉換器。經實驗驗證在無溫度差異情況下均流誤差可達2%以下,且在模組溫度差異下可調節轉換器模組之分擔能力。
This thesis focuses on the design and implementation of multimodule paralleled power converters with temperature compensated current sharing scheme, method used the automatic master slave current sharing. The cooling capacity in each of modules is different result from different situations when installed. The module having poor cooling capacity will break down faster than the others. For this reason, the current sharing control method by sensing the temperature of each module is proposed for improving the reliability of system. Finally, the AC/DC 48V/10A power converter module is implemented for verifying the two-module paralleling system. The power factor correction boost converter and the phase-shift full-bridge converter are proposed in the first and second stage respectively per module. According to the results of experiments, the current error between two modules could be controlled below 2%, and the load regulation along with variation of temperature could be verified.
[1]H. Chung, S. Y. R. Hui, and K. K. Tse, “Reduction of power converter EMI emission using soft-switching technique,” IEEE Trans. Electromagn. Compat., vol. 40, no. 3, pp. 282−287, Aug. 1998.
[2]K. H. Liu and F. C. Y. Lee, “Zero-voltage switching technique in DC/DC converters,” IEEE Trans. Power Electron., vol. 5, no. 3, pp. 293−304, Jul. 1990.
[3]G. Hua and F. C. Lee, “Soft-switching technique in PWM converters,” IEEE Trans. Ind. Electron., vol. 41, no. 2, pp. 241−250, Dec. 1995.
[4]陳昱凱,雙相交錯式半橋LLC諧振轉換器之研製,國立成功大學電機工程學系碩士論文,2012年。
[5]B. Mammano, “Distributed power system,” Unitrode Seminar, SEM -900, 1993.
[6]W. A. Tabisz, M. M. Jovanovic, and F. C. Lee, “Present and future of distributed power systems,” in Proc. IEEE APEC’92, 1992, pp. 11−18.
[7]S. Luo, “A review of distributed power system part I: dc distributed power system,” IEEE Aerosp. Electron. Syst. Mag., vol. 20, no. 8, pp. 5−16, Aug. 2005.
[8]J. Perkinson, “Current sharing of redundant DC-DC converters in high availability system- a simple approach,” in Proc. IEEE APEC’95, 1995, pp. 953−956.
[9]S. Luo, Z. Ye, R. L. Lin, and F. C. Lee, “A classification and evaluation of paralleling methods for power supply modules,” in Proc. IEEE PESC’98, 1998, pp. 221−231.
[10]B. Choi, “Comparative study on paralleling schemes of converter modules for distributed power applications,” IEEE Trans. Ind. Electron., vol. 45, no. 2, pp. 194−199, Apr. 1998.
[11]I. Batarseh, K. Siri, and H. Lee, “Investigation of the output droop characteristics of parallel-connected DC-DC converter,” in Proc. IEEE PESC’94, 1994, pp. 1342−1351.
[12]M. M. Jovanovic, D. E. Crow, and L. F. Yi, “A novel, low-cost implementation of “democratic” load-current sharing of paralleled converter modules,” IEEE Trans. Power Electron., vol. 11, no. 4, pp. 604−611, Jul. 1996.
[13]R. J. Perreault, R. L. Selders, and J. G. Kassakian, “Frequency-based current-sharing techniques for paralleled power converters,” IEEE Trans. Power Electron., vol. 13, no. 4, pp. 626−634, Jul. 1998.
[14]F. Musavi, K. A. Haddad, and H. K. Kanaan, “A novel large signal modelling and dynamic analysis of paralleled DC/DC converters with automatic load sharing control,” in Proc. IEEE ICIT’04, 2004, pp. 536−541.
[15]J. A. Qahoug, H. Mao, and I. Batarseh, “Multiphase voltage-mode hysteretic controlled DC-DC converter with novel current sharing,” IEEE Trans. Power Electron., vol. 19, no. 6, pp. 1397−1408, Jan. 2004.
[16]D. K. W. Cheng, Y. S. Lee , and Y. Chen, “A current-sharing interface circuit with new current-sharing technique,” IEEE Trans. Power Electron., vol. 20, no. 1, pp. 35−43, Jan. 2005.
[17]Y. Chen, K. W. Cheng, Y. S. Lee, “A hot-swap solution for paralleled power modules by using current-sharing interface circuits,” IEEE Trans. Power Electron., vol. 21, no. 6, pp. 1564−1571, Nov. 2006.
[18]侯文傑,並聯直流電源供應器自動主僕均流技術之研究,國立成功大學電機工程學系碩士論文,2004年。
[19]黃偉明,直流電源轉換器並聯之電流分配控制,國立成功大學電機工程學系碩士論文,2007年。
[20]葉家佑,數位/類比混合控制多相式低電壓大電流電源並聯模組之研製,國立成功大學電機工程學系碩士論文,2008年。
[21]L. Rossetto, G. Spiazzi, and P. Tenti, “Control techniques for power factor correction converters,” in Proc. EPE PEMC’94, 1994, pp. 1310−1318.
[22]R. Redl and B. P. Erisman, “Reducing distortion in peak-current- controlled boost power-factor correctors,” in Proc. IEEE APEC’94, 1994, vol. 2, pp. 576−583.
[23]C. Zhou, R. B. Ridley, and F. C. Lee, “Design and analysis of a hysteretic boost power factor correction circuit,” in Proc. IEEE PESC’90, 1990, pp. 800−807.
[24]M. Orabi and A. E. Aroudi, “Different frequency instabilities of averaged current controlled boost PFC AC-DC regulators,” in Proc. IEEE INTELEC’06, 2006, pp. 1−8.
[25]J. S. Lai and D. Chen, “Design consideration for power factor correction boost converter operating at the boundary of continuous conduction mode and discontinuous conduction mode,” in Proc. IEEE APEC’93, 1993, pp. 267−273.
[26]J. S. Glaser and A. F. Witulski, “Output plane analysis of load-sharing in multiple-module converter systems,” IEEE Trans. Power Electron., vol. 9, no. 1, pp. 43−50, Jan. 1994.
[27]J. W. Kim, H. S. Choi, and B. H. Cho, “A novel droop method for the converter parallel operation,” in Proc. IEEE APEC’01, 2001, pp. 959−964.
[28]Y. Huang and C. K. Tse, “Circuit theoretic classification of parallel connected dc-dc converters,” IEEE Trans. Circuits Syst. I, Reg. Papers, vol. 54, no. 5, pp. 1099−1108, May 2005.
[29]B. T. Irving and M. M. Jovanovic, “Analysis, design, and performance evaluation of droop current-sharing method,” in Proc. IEEE APEC’00, 2000, pp. 235−241.
[30]C. Jamerson, T. Long, and C. Mullett, “Seven ways to parallel a magamp,” in Proc. IEEE APEC’93, 1993, pp. 469−474.
[31]C. S. Lin and C. L Chen, “Single-wire current-share paralleling of current-mode-controlled DC power supplies,” IEEE Trans. Power Electron., vol. 47, no. 4, pp. 780−786, Aug. 2000.
[32]K. Siri, C. Q. Lee, and T. F. Wu, “Current sharing control for parallel connected converters: part I,” IEEE Trans. Aerosp. Electron. Syst., vol. 28, no. 3, pp. 829−840, Jul. 1992.
[33]Y. Panov, J. Rajagopalan, and F. C. Lee, “Analysis and design of N paralleled DC-DC converters with master-slave current-sharing control,” in Proc. IEEE APEC’97, 1997, pp. 436−442.
[34]P. Li and B. Lehman, “A design method for paralleling current mode controlled DC-DC converters,” IEEE Trans. Power Electron., vol. 19, no. 3, pp. 748−756, May 2004.
[35]V. Vorperian, “Simplified analysis of PWM converters using model of PWM switch part I : continuous conduction mode,” IEEE Trans. Aerosp. Electron. Syst., vol. 26, no. 3, pp. 490−496, May 1992.
[36]V. Vorperian, “Simplified analysis of PWM converters using model of PWM switch part II : discontinuous conduction mode,” IEEE Trans. Aerosp. Electron. Syst., vol. 26, no. 3, pp. 497−505, May 1992.
[37]J. R. Lee, H. H. Cho, S. J. Kim, and F. C. Lee, “Modeling and simulation of spacecraft power systems,” IEEE Trans. Aerosp. Electron. Syst., vol. 24, no. 3, pp. 295−304, May 1988.
[38]J. Mahdavi, A. Emaadi, M. D. Bellar, and M. Ehsani, “Analysis of power electronic converters using the generalized state-space averaging approach,” IEEE Trans. Circuits Syst. I, Fundam. Theory Appl., vol. 44, no. 8, pp. 767−770, Aug. 1997.
[39]S. R. Sanders, J. M. Noworolski, X. Z. Liu, and G. C. Verghese, “Generalized averaging method for power conversion circuits,” IEEE Trans. Power Electron., vol. 6, no. 2, pp. 251−259, Jan. 1991.
[40]V. Vlatkovic, J. A. Stabate, R. B. Ridley, F. C. Lee, and B. H. Cho, “Small-signal analysis of the phase-shifted PWM converter,” IEEE Trans. Power Electron., vol. 7, no. 1, pp. 128−153, Jan. 1992.
[41]V. J. Thottuvelil and G. C. Verghese, “Analysis and control design of paralleled DC/DC converters with current sharing,” IEEE Trans. Power Electron., vol. 13, no. 4, pp. 635−644, Jul. 1998.
[42]J. Sun, Y. Qiu, B. Lu, M. Xu, F. C. Lee, and W. C. Tipton, “Dynamic performance analysis of outer loop current sharing control for paralleled dc dc converter,” in Proc. IEEE APEC’05, 2005, pp. 1346−1352.
[43]J. Sun, “Dynamic performance analyses of current sharing control for DC/DC converters,” Ph. D Dissertation, Virginia Tech, Blacksburg, 2007.
[44]J. Rajagopalan, K. Xing, Y. Guo, F. C. Lee, and B. Manners, “Modeling and dynamic analysis of paralleled dc/dc converters with master-slave current sharing control,” in Proc. IEEE APEC’96, 1996, pp. 678−684.
[45]Y. Panov and M. M. Jovanovic, “Stability and dynamic performance of current-sharing control for paralleled voltage regulator modules,” IEEE Trans. Power Electron., vol. 17, no. 2, pp. 172−179, Mar. 2002.
[46]M. S. Cooper, “Investigation of Arrhenius acceleration factor for integrated circuit early life failure region with several failure mechanisms,” IEEE Trans. Compon. Packag. Technol., vol. 28, no. 3, pp. 561−563, Sep. 2005.
[47]L. Dixon, “Average current mode control of switching power supplies,” Untirode Application note, U-140, pp. 356−369, 1990.
[48]UCC3895 Datasheet, Texas Instrument, 2013.
[49]J. A. Stabate, V. Vlatkovic, R. B. Ridley, F. C. Lee, and B. H. Cho, “Design consideration for high-voltage high-power full-bridge zero-voltage switched PWM converter,” in Proc. IEEE APEC’90, 1990, pp. 275−284.
[50]UC3902 Datasheet, Unitrode, 1999.