| 研究生: |
廖晉毅 Liao, Chin-I |
|---|---|
| 論文名稱: |
以有機金屬化學氣相沉積法成長高品質變形緩衝層以及選擇性蝕刻製程技術應用於高效能高速場效電晶體之研究 Study of Growing High-Quality Metamorphic Buffer Layer by MOCVD and Selective Etching Process Technology for High Performance HEMT Applications |
| 指導教授: |
洪茂峰
Houng, Mau-Phon 王永和 Wang, Yeong-Her 嚴考豐 Yarn, Kao-Feng |
| 學位類別: |
博士 Doctor |
| 系所名稱: |
電機資訊學院 - 微電子工程研究所 Institute of Microelectronics |
| 論文出版年: | 2004 |
| 畢業學年度: | 92 |
| 語文別: | 英文 |
| 論文頁數: | 169 |
| 中文關鍵詞: | 高速場效電晶體 、製程 、蝕刻 |
| 外文關鍵詞: | HEMT, process, etching |
| 相關次數: | 點閱:86 下載:15 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
在本文中,一種以有機金屬氣相沉積系統在砷化鎵(GaAs)基板上成長高品質的砷化銦鎵(InGaAs)或磷化銦(InP)緩衝層的新穎技術和一種新發展的檸檬酸緩衝蝕刻液(可應用於閘極凹陷製程)已被提出來,這將有助於高電子遷移率電晶體效能(HEMT)的改善。近來,砷化鎵系列變形高電子遷移率電晶體(M-HEMT)技術受到高度重視,成為磷化銦高電子遷移率電晶體之外另一低成本的選擇。然而,成長此變形緩衝層將面臨由晶格不匹配所造成大的表面粗糙度與高缺陷密度。
對於成長變形緩衝層,我們提出一種簡單而且新穎的技術可在砷化鎵基板上直接成長砷化銦鎵或磷化銦薄膜(< 1 μm),可取代以往使用應變層超晶格、兩段式、漸進式或樣板式的沉積方式,同時可維持低缺陷,高晶格品質以及如鏡面一般平坦的表面。對於在砷化鎵上直接成長砷化銦鎵的技術來說,我們發現表面粗糙度均方根植只有6.9 Å (由原子力顯微鏡得到)與半高寬值925 arcsec (由X-射線繞射儀得到)的具有良好品質的In0.54Ga0.46As緩衝層可以在440 oC的低成長溫度與固定在5的Ga/In氣相分壓下得到,此優良的結果一部份是由於低溫成長技術的運用。我們也發現此技術可運用在砷化鎵上直接成長磷化銦緩衝層,由實驗結果得到的結論是將其五三比調整在130至210之間並將成長溫度控制在約480 oC下可達到在砷化鎵基板上直接成長出高品質的磷化銦層材料。
在砷化鎵系列高電子遷移率電晶體製程中,閘極凹槽蝕刻是一個非常關鍵性的步驟;在一個狹窄的製程適用範圍中,凹槽深度與蝕刻後的平坦度皆難以精確控制,並會對元件效能造成明顯的影響。因此,選擇性濕式蝕刻是一個可達到良好平坦度、良率以及無離子破壞的製程。
在本研究中,我們提出一種新發展的CA/H2O2/H2O蝕刻液(CA = 檸檬酸:水的重量比為1:1);其GaAs/Al0.2Ga0.8As蝕刻選擇性可高達256並有一合理的砷化鎵蝕刻速率約43.6 Å/s。此一高選擇性是由於考慮雙氧水在這個蝕刻系統中的參與以致於在Al0.2Ga0.8As的表面上形成不可溶解的三氧化二鋁。在砷化鋁鎵/砷化銦鎵假晶式高電子遷移率電晶體的閘極凹槽製程中,甚至在經過8分鐘的過度蝕刻後仍未見到汲極電流顯著下降,且蝕刻後的表面非常的平坦且其表面粗糙度只有1.97 Å。此一蝕刻過後的良好表面狀態在假晶式高電子遷移率電晶體中可以很明顯地抑制元件閘極漏電流與雜訊。
以新發展的蝕刻液製造的1 × 100 μm2空乏形與增強型砷化鋁鎵/砷化銦鎵假晶式高電子遷移率電晶體表現出良好的直流與微波特性。閘極崩潰(BVGD)與導通(VON)電壓在閘極電流為1mA/mm時,空乏形與增強型假晶式高電子遷移率電晶體分別是-11.3和0.9 V與-12.4和1.0 V。對於電晶體輸出效能,汲極飽和電流在VGS = 0 V是317 mA/mm (空乏型)和VGS = 1.0 V是242 mA/mm (增強型)。而空乏型與增強型假晶式高電子遷移率電晶體的臨限電壓(Vth)分別是-1.99和0.13 V,其最大的Gm值分別是199和315 mS/mm。此元件亦有高線性度,對於空乏型與增強型假晶式高電子遷移率電晶體分別有0.96和0.46-V-wide的有效閘極偏壓幅度(即對應最大Gm值下降10%),IDS分別有221和143-mA/mm-wide。本文中的高閘極電壓幅度可與先前文獻的磷化銦鎵/砷化銦鎵空乏型假晶式高電子遷移率電晶體(0.75 V),埋入式閘極磷化銦鎵/砷化鋁鎵/砷化銦鎵增強型假晶式高電子遷移率電晶體(0.42 V)與全砷化鋁鎵/砷化銦鎵增強型假晶式高電子遷移率電晶體(0.32 V)相媲美。此外,IDS漏電流在VGS是-2和0 V時,對空乏形與增強型假晶式高電子遷移率電晶體來說分別低於13.1和6.7 μA/mm。此一低IDS漏電流有助於減小元件功率消耗與訊號損失。而對於1 × 100 μm2增強型砷化鋁鎵在微波方面的特性來看,其最大穩定增益為16.2 dB (在6.6 GHz下)且最大截止頻率為11.2 GHz。而在2 GHz操作下所量測到的最小雜訊指數為0.72 dB而其相關增益為10.27dB(偏壓在VDS = 3 V 與 IDS = 7.5 mA下) ,這些良好的低雜訊與相關微波特性可證實使用此新式蝕刻液來執行閘極凹陷製程,可得到一相當均勻與平滑的蝕刻表面。
這種新發展的蝕刻液亦可應用於本研究中的假晶式高電子遷移率電晶體其在製作平台(mesa)製程時選擇性的蝕刻暴露在平台側壁的低能障通道,應用此技術製作的1 μm閘極長度元件可擁有良好的電流線性度,在VGD = -10 V時有非常低的閘極漏電流(2.4 μA/mm)和高於-25 V的閘極-汲極崩潰電壓,這將有助於高功率和無線通訊方面的應用。
A novel technique of directly growing high-quality InxGa1-xAs or InP buffer layers on GaAs substrates by MOCVD and a newly developed citric buffer etchant (for gate-recess process) have been proposed, which benefits the improvement of HEMT performance. Recently, GaAs-based metamorphic HEMT technology has emerged as an attractive, low cost alternative to InP HEMTs. However, prevailing problems in metamorphic buffer are large surface roughness and high dislocation densities due to the lattice mismatch issue.
In this work, we present a simple and novel method of direct deposited thin InxGa1-xAs or InP buffer layers (< 1 μm) on GaAs substrates, instead of strained-layer superlattice, two-step, graded or CS (compliant substrates) methods, while maintaining low dislocations, high crystal quality, and uniform and mirror like surfaces. For the direct growth technique of InxGa1-xAs on GaAs, we found an excellent-quality In0.54Ga0.46As buffer of rms surface roughness of only 6.9 Å (by AFM) and FWHM of 925 arcsec (by XRD) can be obtained at a low growth temperature of 440oC with a constant Ga/Ingas partial pressure of 5. The superior results are partly due to the use of low temperature growth technology. We also found this growth technology is available to directly grow InP buffer on GaAs. The experimental results can conclude that the growth temperature of 480oC in harmony with the V/III ratios range of 130-210 is a suitable window to directly grow InP on GaAs substrates.
In GaAs-based HEMT fabrication, gate recess etching is a very critical process; within a narrow process window, the recess depth and etched uniformity are difficult to be precisely controlled, significantly influencing device performance. Hence, selective wet etching is a promising technique to achieve good uniformity, yield, and ion-damage free process.
In this study, we propose a newly developed CA/H2O2/H2O etchant (CA = citric acid:H2O of 1:1 by weight); the etchant possesses a high GaAs/Al0.2Ga0.8As etching selectivity of 256 with a suitable of GaAs etch rate of 43.6 Å/s. The high selectivity is due to consulting the participation of H2O2 in this etching system to form insoluble Al2O3 on the Al0.2Ga0.8As surface. For applications to Al0.2Ga0.8As/In0.15Ga0.85As PHEMT gate recess processes, no obvious drain current decrease can be perceived even after 8 min overetching. The etched surface is very smooth with the rms roughness of only 1.97 Å. This good etched surface state in PHEMT is very significant to suppress the device gate leakage current and noise bulges.
The fabricated 1 × 100 μm2 depletion- and enhancement-mode (D- and E-mode) Al0.2Ga0.8As/In0.15Ga0.85As PHEMTs using the studied etchant show good DC and RF characteristics. The gate breakdown (BVGD) and turn-on (VON) voltages at a gate current of 1 mA/mm are -11.3 and 0.9 V for D-mode, and -12.4 and 1.0 V for E-mode PHEMTs, respectively. For the output transistor performance, the drain saturation currents are 317 mA/mm at VGS = 0 V (D-PHEMTs) and 242 mA/mm at VGS = 1.0 V (E-PHEMTs). The threshold voltage (Vth) is -1.99 and 0.13 V, and the maximum Gm is 199 and 315 mS/mm for D- and E-PHEMTs, respectively. The devices also show high linearity of 0.96 and 0.46-V-wide effective gate bias swing (drop of 10% peak Gm) for D- and E-PHEMT, respectively, corresponding to 221 and 143-mA/mm-wide IDS. The high effective gate voltage swing in this work is comparable to the previous reports of InGaP/InGaAs D-PHEMT (0.75 V), buried gate InGaP/AlGaAs /InGaAs E-PHEMT (0.42 V), and fully AlGaAs/InGaAs E-PHEMT (0.32 V). In addition, the IDS leakage currents at VGS = -2 and 0 V for D- and E-PHEMTs are less than 13.1 and 6.7 μA/mm. For the microwave characteristics of the 1 × 100 μm2 studied E-PHEMTs, the maximum stable gain (MSG) of 16.2 dB was obtained at 6.6 GHz and the cut-off frequency (ft) of 11.2 GHz was realized. The measured minimum noise figure (NFmin) at 2 GHz is 0.72 dB with an associated gain of 10.27 dB can be achieved under VDS = 3 V and IDS = 7.5 mA. These premium low-noise and related RF performances may demonstrate the existence of a smooth and uniform etched surface after selective gate recessing, for the studied Al0.2Ga0.8As/In0.15Ga0.85As E-PHEMTs.
The newly developed etchant is also suitable for selective recessing the exposed low-barrier channel at mesa-sidewalls during mesa isolation for the studied PHEMTs. The 1 μm gate length devices exhibit good current linearity, very low gate leakage of 2.4 μA/mm at VGD = -10 V and high gate to drain breakdown over -25 V, which are beneficial for the applications of high power and wireless communication.
[1] S. T. Fu, L. F. Lester, and T. Rogers, “Ku-band high power high efficiency pseudomorphic HEMT,” in IEEE MTT-S Dig., pp.793-796, 1994.
[2] W. Marsetz, A. Hülsmann, K. Köhler, M. Demmler, and M. Schlechtweg, “GaAs PHEMT with 1.6 W/mm output power density,” Electron. Lett., vol. 35, pp. 748-749, 1999.
[3] S. T. Fu, W. F. Kopp, M. Y. Kao, K. H. G. Duh, P. M. Smith, P. C. Chao, and T. H. Yu, “4 GHz high-power high-efficiency pseudomorphic power HEMT,” in IEEE MTT-S Dig., pp. 1469-1472, 1993.
[4] J. A. Pusl, R. D. Widman, J. J. Brown, M. Hu, N. Kaur, M. BeZaire, and L. D. Nguyen, “High-efficiency L and S -band power amplifiers with high-breakdown GaAs-based pHEMTs,” in IEEE MTT-S Dig., pp. 711-714, 1998.
[5] Y. Tkachenko, Y. Zhao, A. Klimashov, C. J. Wei, and D. Bartle, “Improved breakdown voltage and hot-electron reliability PHEMT for high efficiency power amplifiers,” in Proc. Asia Pacific Microwave Conf., pp. 618-621, 1998.
[6] N. X. Nguyen, W.-N. Jiang, K. A. Baumann, and U. K. Mishra, “High-breakdown AlGaAs/InGaAs/GaAs PHEMT with tellurium doping,” Electron. Lett., vol. 31, pp. 587-589, 1995.
[7] Y. C. Chen, C. S. Wu, C. K. Pao, M. Cole, Z. Bardai, L. D. Hou, T. A. Midford, and T. C. Cisco, “High PAE pseudomorphic InGaAs/AlGaAs HEMT X-band high power amplifier,” in IEEE GaAs IC Symp. Tech. Dig., pp. 281-283, 1995.
[8] D. R. Greenberg, J. A.del Alamo, J. P.Harbison, and L. T.Florez, “A pseudomorphic AlGaAs/n+-InGaAs metal-insulator-doped channel FET for broad-band, large-signal applications,” IEEE Electron Device Lett., vol. 12, pp. 436-438, 1991.
[9] Y. C. Roca, L. Verweyen, M. Neumann, M. F. Barciela, C. C. Francos, E. Sánchez, A. Hülsmann, and M. Schlechtweg, “Coplanar PHEMT MMIC frequency multipliers for 76-GHz automotive radar,” IEEE Microwave Guided Wave Lett., vol. 9, pp. 242-244, 1999.
[10] G. Zhang, R. D. Pollard, and C. M.Snowden, “A novel technique for HEMT tripler design,” IEEE MTT-S Int. Microwave Symp., pp. 663-666, 1996.
[11] D. L. Ingram, K. Cha, K. Hubbard, and R. Lai, “Q-band high isolation GaAs HEMT switches,” in Gallium Arsenide Integrated Circuit Symp., pp. 289-292, 1996.
[12] F. Diette, D. Langrez, J. L.Codron, E.Delos, D.Theron, and G.Salmer, “1510 mS/mm 0.1 μm gate length pseudomorphic HEMTs with intrinsic current gain cutoff frequency of 220 GHz,” Electron. Lett., vol. 32, pp. 848-850, 1996.
[13] Y. C. Chen, D. L. Ingram, R. Lai, M. Barsky, R. Grunbacher, T. Block, H. C. Yen, and D. C.Streit, “A 95-GHz InP HEMT MMIC amplifier with 427-mW power output,” IEEE Microwave Guided Wave Lett., vol. 8, no. 11, pp. 399-401, 1998.
[14] M.Yu, M. Matloubian, P. Petre, L. Hamilton, R. Bowen, M. Liu, H. C. Sun, C. Ngo, and P. Janke, “W-band InP-based HEMT MMIC power amplifiers using finite-ground CPW design,” Proc. IEEE GaAs Int. Circuit Symp., pp. 37-40, 1998.
[15] S. Piotrowicz, C. Gaquiere, B. Bonte, E. Bourcier, D. Theron, X. Wallart, and Y. Crosnier, “Best combination between power density, efficiency, and gain at V-band with an InP-based PHEMT structure,” IEEE Microwave Guided Wave Lett., vol. 8, no. 1, pp. 10-12, 1998.
[16] P. M. Smith, S.-M. J. Liu, M.-Y. Kao, P. Ho, S. C. Wang, K. H. G. Duh, S. T. Fu, and P. C. Chao, “W-band high efficiency InP-based power HEMT with 600 GHz fmax,” IEEE Microwave Guided Wave Lett., vol. 5, no. 7, pp. 230-232, 1995.
[17] O. S. A.Tang, K. H. G.Duh, S. M. J. Liu, P. M.Smith, W. F. Kopp, T. J. Rogers, and D. J. Pritchard, “A 560 mW, 21% power-added efficiency V-band MMIC power amplifier,” Proc. IEEE GaAs Int. Circuit Symp., pp. 115-118, 1996.
[18] C. S. Putnam, M. H.Somerville, J. A. Alamo, P. C. Chao, and K. G.Duh, “Temperature dependence of breakdown voltage in InAlAs/InGaAs HEMTs: Theory and experiments,” Proc. Int. Conf. InP and Related Materials, pp. 197-200, 1997.
M.Amano, S.Fujita, S.Hosoi, T.Noda, A.Sasaki, and Y.Ashizawa, “InAlAs/InGaAs HEMT using InGaP Schottky contact layer,” Proc. Int. Conf. InP and Related Materials, pp. 416-419, 1995.
[19] G. Meneghesso, A. Neviani, R. Oesterholt, M. Matloubian, T. Liu, J. J. Brown, C. Canali, and E. Zanoni, “On-state and off-state breakdown in GaInAs/InP composite-channel HEMT's with variable GaInAs channel thickness,” IEEE Trans. Electron Devices, vol. 46, no. 1, pp. 2-9, 1999.
[20] M. Wojtowicz, R. Lai, D. C. Streit, G. I. Ng, T. R. Block, K. L. Tan, P. H. Liu, A. K. Freudenthal, and R. M. Dia, “0.1 μm graded InGaAs channel InP HEMT with 305 GHz ft and 340 GHz fmax,” IEEE Electron Device Lett., vol. 15, no. 11, pp. 477-479, 1994.
[21] K. Y.Hur, R. A. McTaggart, B. W. LeBlanc, W. E. Hoke, P. J. Lemonias, A. B. Miller, T. E. Kazior, and L. M. Aucoin, “Double recessed AlInAs/GaInAs/InP HEMT's with high breakdown voltages,” Proc. GaAs IC Symp., pp. 101-104, 1995.
[22] T. Suemitsu, T. Enoki, and Y. Ishii, “Body contacts in InP-based InAlAs/InGaAs HEMT's and their effects on breakdown voltage and kink suppression,” Electron Lett., vol. 31, no. 9, pp. 758-759, 1995.
[23] M. Chertouk, M. Dammann, K. Kohler, and G. Weimann, “0.15 μm passivated InP-based HEMT MMIC technology with high thermal stability in hydrogen ambient,” IEEE Electron Device Lett., vol. 21, pp. 97-99, Mar. 2000.
[24] L. D.Nguyen, A. S. Brown, M. A. Thompson, and L. M. Jelloian, “50-nm self-aligned-gate pseudomorphic AlInAs/GaInAs high-electron mobility transistors,” IEEE Trans. Electron Devices, vol. 39, pp. 2007-2014, 1992.
[25] L. D. Nguyen, A. S. Brown, M. A. Thompson, and L. M.Jelloian, “50-nm self-aligned-gate pseudomorphic AlInAs/GaInAs high electron mobility transistor,” IEEE Trans. Electron Devices, vol. 39, pp. 2007-2014, Sept. 1992.
[26] T. Enoki, “Ultrahigh-speed integrated circuits using InP-based HEMT,” Jpn. J. Appl. Phys., vol. 37, pp. 1359-1364, 1998.
[27] J. L. Thobel, L. Baudry, A. Cappy, P. Bourel, and R. Fauquembergue, “Electron transport properties of strained InxGa1–xAs,” Appl. Phys. Lett., vol. 56, pp. 346-348, 1990.
[28] A. Mahajan, “0.3 μm gate-length enhancement-mode InAlAs/InGaAs/InP high-electron mobility transistor,” IEEE Electron Device Lett., vol. 28, pp. 284-286, June 1997.
[29] D. Xu, “An 0.03 μm gate-length enhancement-mode InAlAs/InGaAs/InP MODFET's with 300 GHz ft and 2 S/mm extrinsic transconductance,” IEEE Electron Device Lett., vol. 20, pp. 206-208, May 1999.
[30] N. Harada, S. Kuroda, and K. Hikosaka, “N-InAlAs/InGaAs HEMT DCFL inverter fabricated using Pt-based gate and photochemical dry etching,” IEICE Trans., vol. 10, pp. 1165-1171, 1992.
[31] R. Lai, M. Barsky, R. Grundbacher, Y. C.Chen, R.Tsai, and D.Streit, “0.1 μm InGaAs/InAlAs/InP HEMT production process for high performance and high volume MMW applications,” in Proc. Int. Conf. GaAs Manufacturing Technology, pp. 249-252, 1999.
[32] R. Lai, M. Barsky, R. Grundbacher, P. H.Liu, P.Chin, M.Nishimoto, R.Elmajarian, R.Rodriguez, L.Tran, A.Gutierrez, A.Oki, and D.Streit, “InP HEMT amplifier for G-band (140–220 GHz) applications,” in IEDM Tech. Dig., pp. 175-177, 2000.
[33] M. Barsky, R. Lai, Y. L. Kok, M. Sholley, D. C.Streit, T. Block, P. H. Liu, E.Sabin, H. Rogers, V. Medvedev, T. Gaier, and L. Samoska, “190 GHz InP HEMT MMIC LNA with dry etched backside vias,” in Proc. Int. Conf. InP and Related Mat., pp. 423-425, 1999.
[34] T. Ishida, Y. Yamamoto, N. Hayafuji, S. Miyakuni, R. Hattori, T. Ishikawa, and Y. Mitsui, “Fluorine limited reliability of AlInAs/InGaAs high electron mobility transistors with molybdenum gates,” in Proc. Int. Conf. InP Related Materials, pp. 201-204, 1997.
[35] S. A. Maas, Microwave Mixers, 2nd ed. Norwood, MA: Artech House, 1993.
[36] Y. L. Kok, R. Lai, M. Sholley, T. Gaier, and I. Mehdi, “120 and 60 GHz monolithic InP-based HEMT diode sub-harmonic mixer,” 1998 IEEE MTT-S Int. Microwave Symp. Dig. Baltimore, MD, vol. 3, pp. 1723-1726, 1998.
[37] C. S. Whelan, W. F. Hoke, R. A. McTaggart, M. Lardizabal, P. S.Lyman, P. F.Marsh, and T. E.Kazior, “Low noise metamorphic HEMT on GaAs substrate with 850 mW/mm output power density,” IEEE Electron Device Lett., vol. 21, pp. 5-8, Jan. 2000.
[38] C. S. Whelan, P. F. Marsh, W. E. Hoke, R. A. McTaggart, P. S.Lyman, P. J.Lemonias, S. M.Lardizabal, R. E.Leoni, III, S. J.Lichwala, and T. E.Kazior, “Millimeter-wave low-noise and high-power metamorphic HEMT amplifiers and devices on GaAs substrates,” IEEE J. Solid-State Circuits, vol. 35, pp. 1307-1311.
[39] D. W. Tu, S. Wang, J. S. M.Liu, K. C.Hwang, W. Kong, P. C. Chao, and K. Nichols, “High-performance double-recessed InAlAs/InGaAs power metamorphic HEMT on GaAs substrate,” IEEE Microwave Guided Wave Lett., vol. 9, pp. 458-460, Nov. 1999.
[40] G. W.Wang, Y. K.Chen, W. J. Schaff, and L. F. Eastman, “A 0.1 µm gate Al0.5In0.5As/Ga0.5In0.5As MODFET fabricated on GaAs,” IEEE Trans. Electron Devices, vol. 35, pp. 818-823, July 1988.
[41] D. M. Gill, B. C. Kane, S. P. Svensson, D.-W. Tu, P. N. Uppal, and N. E. Byer, “High-performance 0.1 µm InAlAs/InGaAs high electron mobility transistors on GaAs,” IEEE Electron Device Lett., vol. 17, pp. 328-330, 1996.
[42] M. Chertouk, H. Heiss, D. Xu, S. Krauss, W. Klein, G. Bohm, G. Trankle, and G. Weimann, “Metamorphic InAlAs/InGaAs HEMT's on GaAs substrates with a novel composite channels design,” IEEE Electron Device Lett., vol. 17, pp. 273-275, 1996.
[43] M. Kawano, T. Kuzuhara, H. Kawasaki, F. Sasaki, and H. Tokuda, “InAlAs/InGaAs metamorphic low-noise HEMT,” IEEE Microwave Guided Wave Lett., vol. 7, pp. 6-8, Jan. 1997.
[44] M. Zaknoune, B. Bonte, C. Gaquiere, Y. Cordier, Y. Druelle, D. Theron, and Y. Crosnier, “InAlAs/InGaAs metamorphic HEMT with high current density and high breakdown voltage,” IEEE Electron Device Lett., vol. 19, pp. 345-347, Sept. 1998.
[45] Y. Cordier, Y. Druelle, S. Bollaert, A. Cappy, Strudel, J.diPersio, and D.Ferre´, “MBE grown AlInAs/GaInAs lattice mismatched layers for HEMT application on GaAs substrate,” Appl. Surf. Sci., vol. 123/124, Jan. 1998.
[46] P. Win, Y. Druelle, P. Legry, S. Lepilliet, A. Cappy, Y. Cordier, and J. Favre, “Microwave performance of 0.4 µm gate metamorphic In0.29Al0.71As /In0.3Ga0.7As HEMT on GaAs substrate,” Electron Lett., vol. 29, pp. 169-170, 1993.
[47] J. C. P. Chang, J. Chen, J. M. Fernandez, H. H. Wieder, and K. L. Kavanagh, “Strain relaxation of compositionally graded InxGa1-xAs buffer layers for modulation-doped In0.3Ga0.7As/In0.29Al0.71As heterostructures,” Appl. Phys. Lett., vol. 60, no. 9, pp. 1129-1131, 1992.
[48] J. L. Shieh, J. I. Chiy, R. J. Lin, R. M. Lin, and J. W. Pan, “Band offsets of In0.3Ga0.7As/In0.29Al0.71As heterojunction grown on GaAs substrate,” Electron Lett., vol. 30, pp. 2172-2173, 1994.
[49] F. Salomonsson, K. Streubel, J. Bentell, M. Hammar, D. Keiper, R. Westphalen, J. Piprek, L. Sagalowicz, A. Rudra, and J. Behrend, “Wafer fused p-InP/p-GaAs heterojunctions,” J. Appl. Phys., vol. 83, pp. 768-774, 1998.
[50] J. W. Matthews and A. E. Blakeslee, “Defects in epitaxial multilayers: I. Misfit dislocations,” J. Cryst. Growth, vol.27, pp. 118-125, 1974.
[51] S. N. G. Chu, W. T. Tsang, T. H. Chiu, and A. T. Macrander, “Lattice-mismatch-generated dislocation structures and their confinement using superlattices in heteroepitaxial GaAs/InP and InP/GaAs grown by chemical beam epitaxy,” J. Appl. Phys., vol. 66, pp. 520-530, 1989.
[52] K. Hayashida, Y. Takagi, K. Samonji, H. Yonezu, M. Yokozeki, N. Ohshima, and K. Pak, “Realization of Two-Dimensional Growth and Suppression of Threading Dislocation Generation in (InP) 1(GaAs)n Quaternary Strained Short-Period Superlattices Grown on GaAs,” Jpn. J. Appl. Phys., vol. 34, L1442-1444 (1995).
[53] F. E. Ejeckam, M. L. Seaford, Y. H. Lo, H. Q. Hu, and B. E. Hammons, “Dislocation-free InSb grown on GaAs compliant universal substrates,” Appl. Phys. Lett., vol. 71, pp. 776-778, 1997.
[54] Y. Takano, T. Sasaki, Y. Nagaki, K. Kuwahara, S. Fuke, and T. Imai, “Two-step growth of InP on GaAs substrates by metalorganic vapor phase epitaxy,” J. Cryst. Growth, vol. 169, pp. 621-624, 1996.
[55] H. Wang, G. I. Ng, H. Zheng, Y. Z. Xiong, L. H. Chua, K. Yuan, K. Radhakrishnan and S. F. Yoon, “Demonstration of aluminum-free metamorphic InP/In0.53Ga0.47As/InP double heterojunction bipolar transistors on GaAs substrates”, Radhakrishnan and S. F. Yoon: IEEE Electron Device Lett. Vol. 21, pp.427-432, 2000.
[56] M. Akiyama, Y. Kawarada, and K. Kaminishi, “Growth of GaAs on Si by MOVCD” J. Cryst. Growth, vol. 68, pp. 21-26, 1998.
[57] P. Chavarkar, L. Zhao, S. Keller, A. Fisber, C. Zheng, J. S. Speck, and U. K. Mishra, “Graded growth of InGaAs on GaAs substrates by MBE,” Appl. Phys. Lett., vol. 75, pp. 2253-2256, 1999.
[58] P. Bove, H. Lahreche, and R. Langer, “ InP/InGaAs-based metamorphic HBT material grown in multi-wafer production MBE system,” in Proc. Int. Conf. InP Related Materials, pp. 612-614, 2002.
[59] M. Zaknoune, Y. Cordier, S. Bollaert, D. Ferre, D. Theron, and Y. Crosnier, ”0.1 μm high performance metamorphic In0.32Al0.68 As/In0.33Ga0.67As HEMT on GaAs using inverse step InAlAs buffer,” Electron. Lett., vol. 35, pp. 1670-1671, 1999.
[60] O. Kwon, M. M. Jazwiecki, R. N. Sacks, and S. A. Ringel, “High-performance, metamorphic InxGa1-xAs tunnel diodes grown by molecular beam epitaxy,” IEEE Electron Device Lett. Vol. 24, pp.613-615, 2003.
[61] D. Gill, B. Kane, S. Svensson, D. Tu, P. Uppal, and N. Byer, “High-performance, 0.1 μm InAlAs/InGaAs high electron mobility transistors on GaAs,” IEEE Electron Device Lett., vol. 17, pp. 328-330, 1996.
[62] Tat. Kimura, Tad. Kimura, E. Ishimura, F. Uesugi, M. Tsugami, K. Mizuguchi, and T. Murotani, “Improvement of InP crystal quality grown on GaAs substrates and device applications,” J. Cryst. Growth, vol. 107, pp. 827-831, 1991.
[63] Y. Mihashi, K. Goto, E. Ishimura, M. Miyashita, T. Shimura, H. Nishiguchi, T. Kimura, T. Shiba and E. Omura, ”Long-Wavelength Receiver Optoelectronic Integrated Circuit on 3-Inch-Diameter GaAs Substrate Grown by InP-on-GaAs Heteroepitaxy”, Jpn. J. Appl. Phys., vol. 33, pp. 2599-2604, 1994.
[64] Y. TaKano, T. Sasaki, Y. Nagaki, K. Kuwahara and S. Fuke, T. Imai, “Two-step growth of InP on GaAs substrates by metalorganic vapor phase epitaxy”, J. Cryst. Growth, vol. 169, pp. 621-624, 1996.
[65] Y. Umeda, T. Enoki, and Y. Ishi,” Sensitivity analysis of 50-GHz MMIC-LNA on gate-recess depth with InAlAs/InGaAs/InP HEMTs,” in IEEE MTT-S Dig., pp.123-126, 1994.
[66] L. D. Nguyen, A. S. Brown, M. A. Thompson, and L. M.Jelloian, “50-nm self-aligned-gate pseudomorphic AlInAs/GaInAs high electron mobility transistors,” IEEE Trans. Electron Devices, vol. 39, pp. 2007-2014, Sept. 1992.
[67] G. Meneghesso, D. Buttari, E. Perin, C. Canali, and E. Zanoni, “Improvement of dc, low frequency and reliability properties of InAlAs/InGaAs InP-based HEMTs by means of an InP etch stop layer,” in IEDM Tech. Dig., 1998, pp. 227-230.
[68] A. Endoh, Y. Yamashita, K. Shinohara, M. Higashiwaki, K. Hikosaka, T. Mimura, S. Hiyamizu, and T. Mitsui, “Fabrication technology and device performance of sub-50-nm-gate InP-based HEMTs,” in 13th Int. Conf. Indium Phosphide and Related Materials Nara, Japan, 2001, pp. 448-451.
[69] T. Suemitsu, H. Yokoyama, Y. Umeda, T. Enoki, and Y. Ishii, “High-performance 0.1 μm-gate enhancement-mode InAlAs/InGaAs HEMTs using two-step- recessed gate technology,” IEEE Trans. Electron Devices, vol. 46, pp. 1074-1080, June 1999.
[70] T. Suemitsu, T. Ishii, and Y. Ishii, “Gate and recess engineering for ultrahigh-speed InP-based HEMTs,” in Topical Workshop on Heterostructure and Microelectronics Kyoto, Japan, 2000, pp. 2-3.
[71] N. Belov and N. Khe,” Using deep RIE for micromachining SOI wafers,” Electronic Components and Technology Conference Proceedings, pp. 1163– 1166, 2002.
[72] T. Ohiwa, I. Sakai, and K. Okumura, ” A new gas circulation RIE,” IEEE Trans. Semiconductor Manufacturing, vol. 13, pp. 310-314, 2000.
[73] S. Pang, “Surface damage on GaAs induced by reactive ion etching and sputter etching,” J. Electrochem. Soc., vol. 144, pp. 784-787, 1986.
[74] J. M. Miranda, C. -I. Lin, and J. L. Sebastian, “Influence of reactive ion etching on the microwave trap noise generated in Pt/n-GaAs Schottky diode interfaces,” IEEE Electron Device Lett. vol. 21, pp.515-517, 2000.
[75] G. C.Schwarts and P. M.Schaible, “Reactive ion etching of copper films,” J. Electrochem. Soc., vol. 130, pp. 1777-1779, 1983.
[76] S. Salimian, C. Yuen, C. Shih, and C. B. Cooper, “Damage studies of dry etched GaAs recessed gates for field effect transistors,” J. Vac Sci. Technol. B, vol. 9, pp. 114-119, 1991.
[77] M. Tong, D. G. Ballegeer, A. Ketterson, E. J. Roan, K. Y. Cheng, and I. Adesida, “A comparative study of wet and dry selective etching processes for GaAs/AlGaAs/InGaAs pseudomorphic MODFETs,” J. Electron. Mater., vol. 21, pp. 9-15, 1992.
[78] I. Adesida, Selective Etching of InGaAs and Its Heterostructures, INSPEC, London, 1993, pp. 250-256
[79] T. P. E. Broekaert and C.G. Fonstad, “AlAs Etch-stop Layers for InGaAlAs/InP Heterostructure Devices and Circuits,” IEEE Trans. Electron Devices, vol. 39, pp. 533-539, 1992.
[80] T. P. E. Broekaert and C.G. Fonstad, “Novel, Organic Acid-Based Etchants for InGaAlAs/InP Heterostructure Devices with AlAs Etch-stop Layers,” J. Electrochem. Soc., vol. 139, pp. 2306-2309, 1992.
[81] M. Tong, K. Nummila, A. Ketterson, I. Adesida, C. Caneau, and R. Bhat, “InAlAs/InGaAs/InP MODFET's with Uniform Threshold Voltage Obtained by Selective Wet Gate Recess,” IEEE Electron Device Lett., vol. 13, pp. 525-527, 1992.
[82] M. Tong, K. Nummila, A.A. Ketterson, I. Adesida, L. Aina, and M. Mattingly, “Selective Wet Etching Characteristics of Lattice-matched InGaAs/InAlAs/InP,” J. Electrochem. Soc., vol. 139, pp. L91-L93, 1992.
[83] H. Fourre, F. Diette, and A. Cappy, “Selective wet chemical etching of lattice-matched InGaAs/InAlAs on InP and metamorphic InGaAs/InAlAs on GaAs using succinic acid/hydrogen peroxide solution,” J. Vac. Sci. Technol., B, vol. 14, pp. 3400-3402, 1996.
[84] R. P. Ribas, J. L. Leclercq, J. M. Karam, B. Courtois, and P. Viktorovitch, “Bulk micromatching characterization of 0.2 µm HEMT MMIC technology for GaAs MEMs design,” Mater. Sci. Eng. B, vol. 51, pp. 267-273, 1998.
[85] J. C. Dyment and G. A. Rozgonyi, “Evaluation of a new polish for gallium arsenide using a peroxide-alkaline solution,” J. Electrochem. Soc., vol. 118, pp. 1346-1350, 1971.
[86] J. J. Lepore, “An improved technique for selective etching of GaAs and Ga1–xAlxAs,” J. Appl. Phys., vol. 51, pp. 6441-6442, 1980.
[87] S. K. Cheong, B. A. Bunker, T. Shibata, D. C. Hall, C. B. DeMelo, Y. Luo, G. L. Snider, G. Kramer, and N. El-Zein, “Residual arsenic site in oxidized AlxGa1–xAs (x = 0.96),” Appl. Phys. Lett., vol. 78, pp. 2458-2460, 2001
[88] F. Sfigakis, P. Paddon, V. Pacradouni, M. Adamcyk, C. Nicoll, A. R. Cowan, T. Tiedje, and J. F. Young, “Near-infrared refractive index of thick, laterally oxidized AlGaAs cladding layers,” J. Lightwave Technol., vol. 18, pp. 199-202, 2000.
[89] J. H. Kim, D. H. Lim, and G. M. Yang, “Selective etching of AlGaAs/GaAs structures using the solutions of citric acid/H2O2 and de-ionized H2O/buffered oxide etch,” J. Vac Sci. Technol. B, vol. 16, pp. 558-560, 1998.
[90] M. Otsubo, T. Oda, H. Kumabe, and H. Miki, “Preferential etching of GaAs through photoresist masks,” J. Electrochem. Soc., vol. 123, pp. 676-680, 1976.
[91] C. Juang, K. J. Kuhn, and R. B. Darling, “Selective etching of GaAs and Al0.30Ga0.70As with citric acid/hydrogen peroxide solutions,” J. Vac. Sci. Technol. B, vol. 8, pp. 1122-1124, 1990.
[92] G. C. Desalvo, W. F. Tseng, and J. Comas, “Etch Rates and Selectivities of Citric Acid/Hydrogen Peroxide on GaAs, Al0.3Ga0.7As, In0.2Ga0.8As, In0.53Ga0.47As, In0.52Al0.48As, InP,” J. Electrochem. Soc., vol. 139, pp. 831-835, 1992.
[93] Y. Uenishi, H. Tanaka, and H. Ukita, “Characterization of AlGaAs microstructure fabricated by AlGaAs/GaAs micromachining,” IEEE Trans. Electron Devices, vol. 41, pp. 1778-1783, 1994.
[94] E. A. Moon, J. J. Lee, and H. M. Yoo, “Selective wet etching of GaAs on AlxGa1 – xAs for AlGaAs/InGaAs/AlGaAs pseudomorphic high electron mobility transistor,” J. Appl. Phys., vol. 84, pp. 3933-3938, 1998.
[95] X. Hue, B. Boudart, and Y. Crosnier, “Gate recessing optimization of GaAs/Al0.22Ga0.78As heterojunction field effect transistor using citric acid/hydrogen peroxide/ammonium hydroxide for power applications,” J. Vac. Sci. Technol. B, vol. 16, pp. 2675-2679, 1998.
[96] H. J. Lee, M. S. Tae, K. Radhakrishnan, K. Prasad, J. Weng, S. F. Yoon, X. Zhou, H. S. Tan, S. K. Ting, and Y. C. Leong, “Selective wet etching of a GaAs/AlxGa1-xAs heterostructure with citric acid-hydrogen peroxide solutions for pseudomorphic GaAs/AlxGa1-xAs/InyGa1-yAs heterojunction field effect transister fabrication,” Mater. Sci. Eng. B, vol. 35, pp. 230-233, 1995.
[97] B. Y. Mao, J. A. Nielsen, R. A. Friedman, and G. Y. Lee, “The applications of citric acid/hydrogen peroxide etching solutions in the processing of pseudomorphic MODFETs,” J. Electrochem. Soc., vol 141, pp. 1082-1085, 1994.
[98] H. Watanabe and S. Matsui, “GaAs selective wet etch from AlGaAs and Low-damage Electron-Beam Assisted Dry Etching Using Electron Cyclotron Resonance Plasma Electron Source,' J. Vac. Sci. Technol. B, vol. 11, pp. 2288-2293, 1993
[99] H. M. Manasevit and W. I. Simposon, “The use of metalorganics in the preparation of semiconductor materials on sulating substrates: I. Epitaxial III-V Gallium compounds,” J. Electrochem. Soc, vol. 12, pp. 156-162, 1968.
[100] H. M. Manasevit, “The use of metalorganics in the preparation of semiconductor materials,” J. Cryst. Growth, vol.13, pp. 306-312, 1972.
[101] H. Heinecke, K. Veuhoff, M. Heyen, and P. Balk, “Kinetics of GaAs Growth by low pressure MOCVD,” J. Electron. Mater., vol. 13, pp. 815-820, 1984.
[102] N. V. Steere, CRC Handbook of Laboratory Safety, Chemical Rubber Co., Cleveland, 1967.
[103] Y. TaKano, M. Masuda, Y. Shirakawa, K. Kuwahara and S. Fuke, “Structural investigation of metalorganic chemical-vapor-deposition-grown InGaAs layers on misoriented GaAs substrates,” Jpn. J. Appl. Phys., vol. 39, pp. L901-903, 2000.
[104] L. P. Ramberg, P. M. Enquist, Y. K. Chen, F. E. Najjar, L. F. Eastman, E. A. Fitzgerald and K. L. Kavanagh, “Lattice-strained heterojunction InGaAs/GaAs bipolar structures: Recombination properties and device performance,” J. Appl. Phys., vol. 61, pp. 1234-1240, 1987.
[105] J. Katcki, J. Ratajczak, J. Adamczewska, F. Phillipp, N. Y. Jin-Phillipp, K. Reginski and M. Bugajski, “Selective electrochemical profiting of threading dislocations in mismatched InGaAs/GaAs heteroepitaxial systems,” Phys. Status Solidi, vol. 171, pp. 275-281, 1999.
[106] J. Boucart, F. Gaborit, C. Fortin, L. Goldstein, J. Jacquet, and K. Leifer, “Optimization of the metalmorphic growth of GaAs for long wavelength VCSELs,” J. Cryst. Growth, vol. 201, pp. 1015-1020, 1999.
[107] L. Goldstein, C. Fortin, C. Starck, A. Plais, J. Jacquet, J.Boucart, A.Roche and C. Poussou, “GaAlAs/GaAs metamorphic Bragg mirror for long wavelength VCSELs,” Electron. Lett., vol. 34, pp. 268-269, 1998.
[108] T. Mishima, M. Kudo, J. Kasai, K. Higuchi and T. Nakamura,” Annealing effects on lattice-strain–relaxed In0.5Al0.5As/In0.5Ga0.5As heterostructures grown on GaAs substrates,” J. Cryst. Growth, vol. 201, pp. 271-275, 1999.
[109] G. B. Stringfellow, “Epitaxy”, Progress in Physics, vol. 45, pp. 469-475, 1982.
[110] O. Feron, M. Sugiyama, W. Asawamethapant, N. Futakuchi, Y. Fecurprier, Y. Nakano, Y. Shimogaki,” MOCVD of InGaAsP, InGaAs and InGaP over InP and GaAs substrates: distribution of composition and growth rate in a horizontal reactor,” Appl. Surf. Sci., vol. 159, pp. 318-323, 2000.
[111] S. P. Watkins, R. Ares, C. A. Tran and J. L. Brebner,” Photoluminescence of GaAs doped with dimethylaluminum methoxide during organometallic vapor phase epitaxy,” J. Appl. Phys., vol. 75, pp. 2460-2465, 1994.
[112] Chin-I. Liao, Kao-Feng Yarn, Chien-Lien Lin and Yeong-Her Wang, “Direct Growth of High-Quality InxGa1-xAs Strained Layers on Misoriented GaAs Substrates Grown by Metalorganic Chemical Vapor Deposition,” Jpn. J. Appl. Phys., Vol.41, pp.1247-1252, 2002.
[113] Z. Zhang, S. Yang, F. Zhang, D. Li, Y. Chen, and Z. Wang, “Strain relaxation of InP film directly grown on GaAs patterned compliant substrate,” J. Cryst. Growth, vol. 243, pp. 71-76, 2002.
[114] D. M. Hansen, P. D. Moran, K. A. Dunn, S. E. Babcock, R. J. Matyi, and T. F. Kuech, “Development of a glass-bonded compliant substrate,” J. Cryst. Growth, vol. 195, pp. 144-150, 1998.
[115] G. B. Stringfellow: Organometallic Vapor-Phase Epitaxy: Theory and Practice, Academic, New York, 1989.
[116] W. K. Chen, J. F. Chen, J. C. Chen, H. M. Kim, L. Anthony, C. R. Wie and P.L. Liu, “Indium phosphide on gallium arsenide heteroepitaxy with interface layer grown by flow-rate modulation epitaxy,” Appl. Phys. Lett., vol. 55, pp. 749-751, 1989.
[117] G. Coudenys, I. Moerman, and P. Demeester, “Influence of the nucleation and annealing conditions on the quality of InP layers grown on GaAs by MOCVD,” J. Cryst. Growth, vol. 114, pp. 314-320, 1991.
[118] T. Makimoto, K. Kurishima, T. Kobayashi and T. Ishibashi,” InP/InGaAs Double Heterojunction Bipolar Transistors Grown on Si,” Jpn. J. Appl. Phys., vol. 30, pp. 3815-3817, 1991.
[119] Y. Okuno and M. Tamura, “Direct Wafer Bonding of a (001) InP-Based Strained Multiple Quantum Well on a (110) Si Substrate with a GaAs Buffer Layer, Aligning Cleavage Planes of InP and Si,” Jpn. J. Appl. Phys., vol. 35, pp. L1652-1654, 1996.
[120] D. J. Olego, Y. Okuno, T. Kawano, and M. Tamura, “Structural and optoelectronic properties and their relationship with strain relaxation in heteroepitaxial InP layers grown on GaAs substrates,” J. Appl. Phys., vol. 71, pp. 4492-4501, 1992.
[121] Y. S. Touloukian, R.K. Kirby, R.E. Taylor, and T.Y.R. Lee: Thermal Expansion of Non-Metallic Solids, vol. 13 of Thermophysical Properties of Matter, Plenum, New York, 1977.
[122] G. Coudenys, I. Moerman and P. Demeester, “Influence of the nucleation and annealing conditions on the quality of InP layers grown on GaAs by MOCVD,” J. Cryst. Growth, vol. 114, pp. 314-320, 1991.
[123] J. W. Matthews, Epitaxial growth, Academic, New York, p. 560, 1975.
[124] H. Horikawa, Y. Ogawa, K. Kawai and M. Sakuta, “Heteroepitaxial growth of InP on a GaAs substrate by low-pressure metalorganic vapor phase epitaxy,” Appl. Phys. Lett., vol. 53 pp. 397-399, 1988.
[125] S. N. Chu, W. T. Tsang, T. H. Chiu, and A. T. Macrander, “Lattice-mismatch-generated dislocation structures and their confinement using superlattices in heteroepitaxial GaAs/InP and InP/GaAs grown by chemical beam epitaxy,”J. Appl. Phys. vol. 66 pp. 520-530, 1989.
[126] S. Sawada, S. Matsukawa, T. Iwasaki, Y. Miura and M. Yokogawa: Proc. 13th Int. Conf. Indium Phosphide and Related Materials, 2001, p. 303.
[127] H. Wang, H. Zheng, L. H. Chua, and Yong Zhong Xiong, “DC and microwave characteristics of metamorphic InP/In0.53Ga0.47As heterojunction bipolar transistors grown on GaAs substrates,” Proc. 13th Int. Conf. Indium Phosphide and Related Materials, pp. 235-238, 2000.
[128] J. H. Jang, G. Cueva, and W. E. Hoke,” P-i-n photodiodes in metamorphic InAlAs-InGaAs-GaAs for long wavelength applications,” Device Research Conference, Dig., vol. 19, pp. 173-174, 2000.
[129] J. H. Lewis, J. H. Pitts, and N. Zein, “Metamorphic In0.53Ga0.47As-In0.52Al0.48 As tunnel diodes grown on GaAs,” IEEE International Symposium Compound Semiconductors, pp. 143-148, 2000.
[130] S. Decai, F. Wenjun, P. Kner, and W. Yuen, “Sub-mA threshold 1.5-µm VCSELs with epitaxial and dielectric DBR mirrors,” IEEE Photonics Technology Lett., vol. 15, pp. 1677-1679, 2003.
[131] M. Otsubo, T. Oda, H. Kumabe, and H. Miki, “Preferential Etching of GaAs Through Photoresist Masks,” J. Electrochem. Soc., vol. 123, pp. 676-680 1976.
[132] D. Briggs and M. P. Seah, Practical Surface Analysis, p.602-609, John Wiley and Sons, New York, 1990.
[133] J. D. Kubicki and S. E. Apitz, “Molecular cluster models of aluminum oxide and aluminum hydroxide surface,” American Mineralogist, vol. 83, pp. 1054-1066 1998.
[134] O. Kubaschewski, C. B. Alcock, and P. J. Spencer, Materials Thermochemistry, p. 6-26, Pergamon, New York, 1993.
[135] Y. Arai and D. L. Sparks, “Residence time effects on arsenate surface speciation at the aluminum oxide-water interface,” Soil Sci., vol. 167, pp. 303-314, 2002.
[136] B. Tuck, J. Mater. Sci., vol. 10, p. 321, 1975.
[137] C. I. Liao, M. P. Houng, and Y.H. Wang “Highly selective etching of GaAs on Al0.2Ga0.8As using citric acid/H2O2 /H2O etching system,” Electrochem. Solid-State Lett., accepted for publication.
[138] C. I. Liao, P. W. Sze, M. P. Houng, and Y. H. Wang, “Very high selective etching of GaAs/Al0.2Ga0.8As for gate recess process to PHEMT applications using citric buffer solution,” Jpn. J. Appl. Phys., vol. 43, pp.800-802, 2004.
[139] A. Nagayama, S. Yamauchi, and T. Hariu, “Suppression of Gate Leakage Current in n-AlGaAs/GaAs power HEMTs,” IEEE Trans. Electron Devices, vol. 47, pp. 517-522, 2000.
[140] H. K. Huang, Y. H. Wang, C. L. Wu, C. Wang, and C. S. Chang, “Super low noise InGaP gated PHEMT,” IEEE Electron Dev. Lett., vol. 23, pp.70-73, 2002.
[141] P. Fay, K. Stevens, J. Elliot, and N. Pan, “Gate length scaling in high performance InGaP/InGaAs/GaAs pHEMTs,” IEEE Electron Dev. Lett., vol. 21, pp.141-143, 2000.
[142] Y. Okamoto, K. Matsunaga, M. Kuzuhara, and M. Kanamori, “Novel InGaP/AlGaAs/InGaAs heterojunction FET for X-Ku band power applications” IEEE MTT-S Dig., vol. 3, pp. 1191-1194, 1997.
[143] S. D. Cho, H. T. Kim, and D. M. Kim, “Physical mechanisms on the abnormal gate-leakage currents in pseudomorphic high electron mobility transistors,” IEEE Trans. Electron Devices, vol. 50, pp. 1148-1152, 2003.
[144] J. B. Boos and W. Kruppa, “InAlAs/InGaAs/InP HEMTs with high breakdown voltages using double-recess gate process,” Electron. Lett., vol. 27, pp. 1909-1910, 1991.
[145] C. L. Chen, L. J. Mahoney, and K. M. Sage, “Planar integration of a resonant-tunneling diode with pHEMT using a novel proton implantation technique,” IEEE Electron Device Lett., vol. 19, pp. 478-480, 1998.
[146] B. Y. Mao, J. A. Nielsen, and G. Y. Lee, “The applications of citric acid/hydrogen peroxide etching solutions in the processing of pseudomorphic MODFETs,” J Electrochem. Soc., vol. 141, pp. 1082-1085, 1994.
[147] Y. G. Xie, S. hasai, and H. Hasegawa, “A novel InGaAs/InAlAs insulated gate pseudomorphic HEMT with a silicon interface control layer showing high DC- and RF-performance,” IEEE Electron Device Lett., vol. 22, pp. 312-314, 2001.
[148] Fazal Ali and Aditya Gupta, HEMTs and HBTs: Devices, Fabrication, and Circuits, Artech House, London, 1991, pp.29-57.
[149] Y. Okamoto, K. Matsunage, and M. Kuzuhara, “Enhancement-mode buried gate InGaP/AlGaAs/lnGaAs heterojunction FETs fabricated by selective wet etching,” Electron. Lett., vol. 31, pp.2216-2218, 1995.
[150] S. Yoshida, Y. Wakabayashi, M. kohno, and K. Uemura, “Greater than 70% PAE enhancement-mode GaAs HJFET power amplifier MMIC with extremely low leakage current,” IEEE MTT-S Dig., pp.1183-1186, 1999.
[151] A. J. McCamant, G. D. Mccormack, and D. H. Smith, “An improved GaAs MESFET model for SPICE,” IEEE Trans. Microwave Theory Tech., vol. 38, pp. 822-824, 1990.
[152] C. J. Wei, Y. A. Tkachenko, and D. Bartle, “A new model for enhancement-mode power pHEMT,” IEEE Trans. Microwave Theory Tech., vol. 50, pp. 57-60, 2002.