| 研究生: |
吳宗祐 Wu, Zong-You |
|---|---|
| 論文名稱: |
不同降雨及土壤條件下未飽和土層崩塌數值模擬研究 Numerical Simulation on the Landslide of an Unsaturated Soil Layer under Different Rainfall and Soil Conditions |
| 指導教授: |
詹錢登
Jan, Chyan-Deng |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 水利及海洋工程學系 Department of Hydraulic & Ocean Engineering |
| 論文出版年: | 2017 |
| 畢業學年度: | 105 |
| 語文別: | 中文 |
| 論文頁數: | 88 |
| 中文關鍵詞: | 崩塌 、未飽和降雨入滲 、邊坡穩定 、雨型分布 、消散波 |
| 外文關鍵詞: | Landslide movement, Unsaturated rain infiltrationv, Slope stability, Hyetograph, dissipative wave |
| 相關次數: | 點閱:97 下載:5 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究在考慮不同降雨、土壤及初始土壤飽和度條件下,模擬無限邊坡土層之崩塌及滑動行為。模式的建立以消散波方程式及牛頓第二運動定律為基礎,考慮降雨入滲強度隨時間變化與未飽和的土壤條件,引入時變性降雨邊界條件與未飽和土壤參數,利用數值方法求解邊坡土層在降雨入滲下之破壞行為極其破壞後之與運動特性。研究結果顯示,降雨入滲的強度會控制崩塌的發生時間,但發生崩塌與否卻和降雨總入滲量、土體本身參數有關。由於土體降雨入滲的總壓力有著最大上限值,因此11種模擬土體可以區分為穩定土體與崩塌土體兩類,穩定土體受土壤本身性質之影響,當土體含坋土(Silt)量大於30%以上,或含黏土(Clay)量大於70%以上時,不會產生崩塌現象;而崩塌土體之破壞模式中,砂土、壤質砂土與砂質黏壤土會從土層頂部開始產生破壞,並逐漸影響到下方土層,進而引發整層土層滑動,砂質黏土與壤土反之從土層底部開始破壞。接著在本研究中可以知曉邊坡滑動發生時間受到降雨鋒型位置不同所影響,快到慢依序為前峰型、中峰型、後峰型,而滑動最後速度由快到慢依序為後峰型、中峰型、前峰型,且速度皆由土層上至下遞減,其中後峰型降雨可視為臨前降雨加上短延時暴雨,因此在相同初始飽和度條件下,後峰型所產生的滑動速度為最快。此外當初始土體飽和度越高,破壞發生的時間會越早、滑動最後速度會越快;而初始土體飽和度接近乾土時,土體不易產生滑動行為。
Landslide is a general, natural geomorphic erosion process on hillsides and can be threaten to people’s life and properties. In this study, landsliding along an infinite slope for diverse soil materials were analyzed under different rain infiltration, and initial saturation conditions. We developed a model that describes landsliding (i.e., triggering and movement) based on the factor of safety and the Newton's second law. Evolution of capillary pressure within a soil layer obeys a dissipative wave equation and the Fourier’s series is employed into boundary conditions to describe time-varying, unsaturated rain infiltration. Factor of safety is used to determine the depth and timing of landslide triggering and the Newton's second law is solved by the classical Simpson’s rule. Results show that the intensity of rain infiltration controls the timing of the landslide occurrence, but landslide triggering is mainly influenced by accumulated rainfall infiltration and soil properties. Here we categorize 11 soil properties used in this study into stable and unstable hillslopes. Numerical results for the stable hillslope indicate that landslide could not be triggered when its corresponding soil materials containing silt more than 30% and clay more than 70%. For unstable hillslopes, failures in sand, loamy sand, and sandy loam can be from the top, gradually propagating to soil-bedrock boundary; however, that in sandy clay and loam is occurred at soil-bedrock boundary directly. Hyetographs of rain infiltration can play an important role in landslide triggering, showing that advanced peak and delayed peak can lead to early landslide occurrence and the significant terminal velocity of landslide movement, respectively. In addition, the timing of landslide occurrence and the terminal velocity of its movement are also governed by initial soil saturation, indicating that the higher the saturation, the earlier the timing of landslide triggering and the faster the terminal velocity of landslide movement.
1.行政院農委會水保局(2005), 水土保持手冊。
2.台灣常用山崩分類系統(2011),第十四屆大地工程研討會。
3.張家薰(2004),降雨引發邊坡崩塌潛勢評估模式之建構,國立暨南大學土木工程學系,碩士論文。
4.陳主惠, 張守陽, 周憲德, 李伯亨(2004),入滲對非飽和邊坡淺層崩塌發生機制之研究,中華水土保持學報,35(1):69-77。
5.蘇歆婷(2007),「降雨引發坡地崩塌風險評估模式之建立與應用」,國立交通大學土復工程學系研究所,碩士論文。
6.柯傑夫(2010), 鐵立庫崩塌地,北臺灣:以試驗判斷岩盤湧水扮演的角色, 國立臺灣大學土木工程研究所,碩士論文
7.陳冠翰(2011), 滲流誘發斜坡土體滑動特性之試驗, 國立中興大學水土保持學系所,碩士論文。
8.詹勳全, 張嘉琪, 陳樹群, 魏郁軒, 王昭堡, 李桃生(2015),台灣山區淺層崩塌地特性調查與分析,中華水土保持學報,46(1):19-28。
9.楊斯堯(2016),以孔彈性理論進行非飽和降雨入滲下邊坡穩定之時變性分析, 國立成功大學水利及海洋工程學系所,博士論文。
10.小出博(1954),「山崩れ」,日本古今書院。
11.Aleotti P (2004) A warning system for rainfall-induced shallow failures. Eng Geol 73:247–265.
12.Bear J (1988) Dynamics of Fluids in Porous Media, Dover, Mineola, N. Y.
13.Berryman JG, Thigpen L, Chin RCY (1988) Bulk elastic wave propagation in partially saturated porous solids. J Acoust Soc Am 84 (1), 360–373.
14.Biot MA (1941) General theory of three-dimensional consolidation. J Appl Phys 12:155-164.
15.Biot MA (1956) Theory of propagation of elastic waves in a fluidsaturated porous solid, I. Low-frequency range, J Acoust Soc Am 28(2), 168–178.
16.Biot MA (1962) Mechanics of deformation and acoustic propagation in porous media, J Appl Phys 33(4), 1482– 1498.
17.Borga, M., Dalla Fontana, G., Gregoretti, C. and Marchi, L. (2002). Assessment of Shallow Landsliding by Using a Physically Based Model of Hillslope Stability. Hydrological Processes, 16 (14), 2833-2851.
18.Brunetti MTS, Peruccacci S, Rossi M, Luciani S, Valigi D, Guzzetti F (2010) Rainfall thresholds for the possible occurrence of landslides in Italy. Nat Hazards Earth Syst Sci 10:447–458.
19.Campbell RH (1975). Soil slopes, debris flows, and rainstorms in the Santa Monica Mountains and vicinity, southern California. U.S. Geol Surv Prof Pap 851.
20.Caine N (1980) The rainfall intensity–duration control of shallow landslides and debris flows. Geograf Annal 62A:23–27.
21.Chang, C. H., Yang, J. C., and Tung, Y. K. (1993) Sensitivity and Uncertainty Analyses of a Sediment Transport Model: a Global Approach. Journal of Stochastic Hydrology and Hydraulic, 7(4), 299-314.
22.Chen, J. C., Jan, C. D., & Lee, M. H. (2007). Probabilistic Analysis ofLandslide Potential of an Inclined Uniform Soil Layer of Infinite Length:Theorem. Environmental Geology, 51(7), 1239-1248.
23.Chen CY, Yu FC, Lin SC, Cheung KW (2007) Discussion of Landslide Self-Organized Criticality and the Initiation of Debris Flow. Earth Surf Process Landforms 32:197–209
24.Crosta, G. and C. di Prisco (1999), On slope instability by seepage erosion. Can. J. Geotech, Vol.36, pp.1056-1073.
25.Crozier MJ, Glade T (2005) The nature of landslide hazard impact. In: Glade et al (eds) Landslide hazard and risk. Wiley, London, pp 43-74.
26.Crozier MJ(1999), Prediction of rainfall-triggered landslides: a test of the antecedent water status model. Earth Surf. Process. Landforms 24, 825±833 (1999)
27.Enrico Conte and Antonello Troncone, Ph.D.(2012), Simplified approach for analysis rainfall induced shallow landslide. J. Geotech. Geoenviron. Eng. 2012.138:398-406.
28.Floris M, D’Alpaos A, De Agostini A, Tessari G, Genevois R (2012) A process-based model for the definition of hydrological alert systems in landslide risk mitigation. Nat Hazards Earth Syst Sci 12:3343–3357.
29.Frattini P, Crosta G, Sosio R (2009) Approaches for defining thresholds and return periods for rainfall-triggered shallow landslides. Hydrol Process 23:1444–1460.
30.Guzzetti F, Peruccacci S, Rossi M, Stark CP (2007) Rainfall thresholds for the initiation of landslides in central and southern Europe. Meteorol Atmos Phys 98:239–267.
31.Glade T, Crozier MJ, Smith P (2000) Applying probability determination to refine landslide-triggering rainfall thresholds using an empirical antecedent daily rainfall model. Pure Appl Geophys 157:1059–1079.
32.Iverson R. M. (2000). Landslide triggering by rain infiltration, Water Resour. Res., 36, 1897– 1910.
33.Larsen, M. C. and Simon, A., 1993: A rainfall intensity-duration threshold for landslides in a humid-tropical environment, Puerto Rico. Geogr. Ann. 75 A (1-2): 13.
34.Lo WC, Sposito G, Majer E (2002) Immiscible two-phase fluid flows in deformable porous media. Adv Water Resour 25(8–12), 1105– 1117.
35.Lo WC, Sposito G, Majer E (2005) Wave propagation through elastic porous media containing two immiscible fluids. Water Resour Res 41, W02025.
36.Lo WC, Sposito G, Majer E (2007) Low-frequency dilatational wave propagation through unsaturated porous media containing two immiscible fluids. Transp Porous Media 68, 91–105.
37.Morgenstern, N. R., (1997). Toward Landslide Risk Assessment in Practice.In: Cruden and Fell (eds.) Landslide Risk Assessment, 15-24, Balkema,Rotterdam
38.Ning Lu and Jonathan Godt (2008), Infinite slope stability under steady unsaturated seepage conditions. WATER RESOURCES RESEARCH, VOL. 44, W11404.
39.Rawls, W. J., J. R. Ahuja, and D. L. Brakensiek, Estimating soil hydraulic properties from soils data, Proceedings of Workshop on Indirect Methods for Estimating the Hydraulic Properties of Unsaturated Soils, Riverside, CA, pp.329-341, 1992.
40.Saito H, Nakayama D, Matsuyama H (2010), Relationship between the initiation of a shallow landslide and rainfall intensity–duration thresholds in Japan. Geomorphology 118:167–175.
41.Saltelli,A.,Ratto,M.,Andres,T.,Campolongo, F. ,Cariboni, J., Gatelli, D.,Saisana, M. and Tarantola, S. (2008) Global Sensitivity Analysis, the Primer .
42.Torres R, Dietrich WE, Montgomery DR, Anderson SP, Kieth L (1998) Un saturated
43.Tsai T. L., Yang J. C. (2006), Modeling of rainfall‐triggered shallow landslide, Environ. Geol., 50(4), 525–534. zone processes and the hydrologic response of a steep, unchanneled catchment. Water Resour Res 34(8), 1865-1879
44.Varnes, D. J., (1978), Slope movement types and processes, In: Special Report 176: Landslides: Analysis and Control .Transportation Res. Board Nat. Ac. Sci., Washington Spec., Rep.176.
45.Wang HF, (2000) Theory of linear poroelasticity with Applications to geomechanics and hydrogeology. Princeton, Princeton University Press.
46.Wang, Gonghui and Kyoji Sassa (2003), Pore-pressure generation and movement of rainfall-induced landslides: Effects of grain size and fine-particle content. Engineering Geology, Vol.69,pp. 109-125.
47.Wieczorek GF, Morgan BA, Campbell RH (2000). Debris-flow hazards in the Blue Ridge of central Virginia. Environ Eng Geosci 6(1):3–23.
48.Yang SY and Jan CD. (2016) Soil water transmission under rain infiltration on a n unchannelled hillslope. 2016 American Geophysical Union Fall Meeting