| 研究生: |
張嘉麟 Chang, Chia-Lin |
|---|---|
| 論文名稱: |
無線生醫遙測系統之研製與前端訊號擷取電路晶片之設計 The Implementation of Wireless Biotelemetry System and the Design of the Bio-potential Acquisition Chip |
| 指導教授: |
羅錦興
Luo, Ching-Hsing |
| 學位類別: |
博士 Doctor |
| 系所名稱: |
電機資訊學院 - 電機工程學系 Department of Electrical Engineering |
| 論文出版年: | 2011 |
| 畢業學年度: | 99 |
| 語文別: | 英文 |
| 論文頁數: | 111 |
| 中文關鍵詞: | 擷取裝置 、生醫訊號晶片 、生醫遙測系統 |
| 外文關鍵詞: | Acquisition Device, Bio-potential Chip, Biotelemetry |
| 相關次數: | 點閱:48 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本論文主要包含了有關植入式頻帶的系統設計,以及無線生醫遙測系統整合。在植入式的部分,本論文實現了一創新植入式無線生醫通訊系統架構,此系統由三種頻段組成:402 MHz資料傳送、433 MHz無線傳能與2.4 GHz之喚醒控制電路,此三頻無線生醫通訊系統包含了功耗管理的韌體程式以及三頻硬體電路,與本實驗室天線團隊設計的微小化三頻天線整合測試成功,此系統將可大大改善植入式感測裝置電池的損耗。
在無線生醫遙測系統設計的應用,為了擷取相關的生醫訊號,在無線通訊的部分,使用ISM頻帶2.4GHz的ZigBee作為傳輸媒介,透過韌體的控制能有效的利用ZigBee傳輸資料頻寬,有效節省無線傳輸時所需要的功耗,這樣的無線裝置,在傳輸ECG以及EEG時分別可以節省46%以及67%的功耗。而在前端的處理晶片設計,本文亦提供了具備高共模拒斥比(120dB)、低功耗(11.34uW)、高輸入阻抗以及低雜訊等優點的DDA放大晶片,另外加入SAR ADC晶片以作為前端處理晶片,並與乾電極以及其他週邊電路整合,可成功量測到ECG訊號。而為了能長時間記錄生醫訊號,本文亦提出另外一種可攜式的紀錄系統,包含了低功耗DDA放大晶片,並以SD卡做為記錄生醫訊號的儲存裝置,單個通道的ECG訊號一天僅需要85MB的資料空間,此系統中亦成功整合了以PDMS為基底的彈性乾電極,它提供了一個較為彈性且舒適的接觸面,且長時間使用不會造成過敏、紅腫等現象,整體裝置功耗加起來小於1mW,且可使用電池供電,相當適合用於長時間運作的生醫紀錄裝置。
This paper presents a novel triple-band bio-telemetry system and a wireless power-efficient bio-potential acquisition device. The triple-band bio-telemetry system that is implemented using a power management firmware, triple-band communication circuits and a miniaturized implantable antenna for implantable applications. The proposed system effectively covers three bands for 402 MHz at MICS (medical implant communications service) band, 433 MHz and 2.4 GHz at ISM (industrial, scientific, and medical) band. This triple-band communication circuits consist of a 402 MHz data transmission telemetry and a 433 MHz wireless powering transmission circuit, as well as a 2.4 GHz wake-up controller circuit. The system was successively integrated and could substantially improve the life-time of the implantable device.
In this work, the wireless power-efficient bio-potential acquisition device for long-term healthcare applications that is implemented using low power bio-potential processing chip, PDMS flexible dry electrodes, and wireless power-efficient physiological signal devices. And the wireless device power management of the ubiquitous health care systems is another focus. Hence, this thesis presents a power management method associated with the ZigBee protocol for saving power dissipation. The ECG signals and four EEG signals are successfully transmitted by proposed wireless power-efficient devices and the power consumption is 74.8mW (ECG), 54.4mW (EEG) respectively. Compared with the original sensor without power management (170mW), it saves 56% power in ECG acquisition and 68% power in EEG acquisition.
To acquire differential bio-potentials such as ECG signals, the proposed processing chip fabricated in a standard CMOS process has a high common mode rejection ratio (C.M.R.R.) differential amplifier and an analog-to-digital converter (ADC). The bio-potential acquisition amplifiers fabricated in a standard CMOS process obtain the following characteristics, high C.M.R.R. (120dB), high input impedance, low power consumption(11.34uW) and low noise for processing biomedical signals. Following the acquisition amplifier, a low power filter with low cut-off frequency is selected to suppress the out-of-band noise and provide better signal-to-noise (SNR). However, the acquisition system requires an analog-to-digital converter for digitizing the outputs of the front-end acquisition circuit. A successive approximation register ADC (SAR-ADC) architecture is selected due to its predominant power dissipation property compared to other architectures. Use of the proposed system and integrate simple peripheral commercial devices (MCU and SD card) can obtain the ECG signal efficiently. The data storage value in one day is only around 85MB.
However, the wet electrodes are uncomfortable for long-term monitoring applications since they always require skin preparation and the use of electrolytic gel is physically uncomfortable and inconvenient; it can cause itchiness,occasionally reddening and skin swelling during long-term ECG-measurement. This work presents a novel PDMS flexible dry electrodes (FDE) for obtaining the following advantages (1) changes the shape contact with the skin, provides a flexible and comfortable interface, and (2) that could not cause itchiness, irritation and skin tissue injury during long-term use.
[1] E.Waterhouse, “New horizons in ambulatory electroencephalography,” EEE Engineering in Medicine and Biology Magazine, IEEE, Vol. 22, No. 3, pp. 74–80, May–Jun. 2003.
[2] Jianchu Yao, Schmitz R., Rarren S., “A wearable point-of-care system for home use that incorporates plug-and-play and wireless standards,” IEEE Transactions on Information Technology in Biomedicine, Vol. 9, No. 3, pp 363-371, Sep. 2005.
[3] Yuan-Hsiang Lin, I-Chen Jan, Patrick Chow-in Ko, Yen-Yu Chen, Jau-Min Wong, and Gwo-jen Jan, “A wireless PDA-based physiological monitoring system for patient transport,” IEEE Transaction on Information Technology in Biomedicine, Vol. 9, No. 4, pp 439-447, Dec. 2004.
[4] R. Schmidt, T. Norgall, J. Mörsdorf, J. Bernhard, T. von der Grün, “Body Area Network BAN–a key infrastructure element for patient-centered medical applications,” Biomed. Tech. (Berl.), Vol. 47, pp. 365–368, 2002.
[5] Refet Firat Yazicioglu,Chris Van Hoof,Robert Puers, “Biopotential Readout Circuits for Portable Acquisition Systems”, Springer, 2008.
[6] Chia-Lin Chang, Chih-Wei Chang, Chen-Ming Hsu, Ching-Hsing Luo, Jin-Chern Chiou, “A Power-Efficient Wireless Sensor for Physiological Signal Acquisition”, Journal of Micro/Nanolithography, MEMS, and MOEMS (JM3), Vol. 8, pp. 021120-1 021120-7 , Apr. 2009.
[7] Proulx, J.; Clifford, R.; Sorensen, S.; Dah-Jye, L.; Archibald, J. “Development and Evaluation of a Bluetooth EKG Monitoring Sensor.”19th IEEE International Symposium on Computer-Based Medical Systems, pp. 507-511, June 2006.
[8] Morais, R.; Fernandes, M.A.; Matos, S.G.; Serôdio, C.; Ferreira, P.J.S.G.; Reis, M.J.C.S. “A ZigBee Multi-Powered Wireless Acquisition Device for Remote Sensing Applications
in Precision Viticulture.” Computers and Electronics in Agriculture , Vol. 62, pp.94-106, 2008.
[9] Breit, S.; Spieker, S.; Schulz, J.B., Gasser, T., “Long-Term EMG Recordings Differentiate Between Parkinsonian and Essential Tremor” Journal of Neurology, Vol. 255, pp.103-111, 2008.
[10] Fay, L.; Misra, V.; Sarpeshkar, R. “A Micropower Electrocardiogram Amplifier” IEEE Transactions on Biomedical Circuits and Systems, Vol. 3, No. 5, pp.312-320, Oct.2009.
[11] W. G. Scanlon, N. E. Evans, and Z. M. McCreesh, “RF performance of a 418 MHz radio telemeter packaged for human vaginal placement,” IEEE Transactions on Biomedical Engineering, Vol. 44, No. 5, pp. 427–430, May 1997.
[12] W. G. Scanlon, N. E. Evans, and J. B. Burns, “FDTD analysis of closecoupled 418 MHz radiating devices for human biotelemetry,” Physics in Medicine & Biology, Vol. 44, No. 2, pp. 335–345, Feb. 1999.
[13] G. C. Crumley, N. E. Evans, J. B. Burns, and T. G. Trouton, “On the design and assessment of a 2.45 GHz radio telecommand system for remote patient monitoring,” Medical Engineering & Physics, Vol. 20, No. 10, pp. 750–755, Mar. 1999.
[14] S. Pichitpong, C. M. Furse, and C. C. You, “Design of Implantable Microstrip Antenna for Communication with Medical Implants,” IEEE Trans. Microw. Theory Tech., Vol. 52, pp. 1944-1951, Aug. 2004.
[15] C. M. Lee, T. C. Yo, C.-H. Luo, C. H. Tu, and T. Z. Juang, “Compact broadband stacked implantable antenna for biotelemetry with medical devices”, IEE Electronics Letters, Vol. 43, No. 12, pp. 660–662, Jun. 2007.
[16] W. C. Liu, F. M. Yeh, and M. Ghavami, “Miniaturized implantable broadband antenna for biotelemetry communication”, Microwave and Optical Technology Letters, Vol. 50, No. 9., pp. 2407–2409, Sep 2008.
[17] W. C. Liu, S. H. Chen, and C. M. Wu, “Bandwidth enhancement and size reduction of an implantable PIFA antenna for biotelemetry devices” Microwave and Optical Technology Letters, Vol. 51, No 3, pp. 755–757, Mar. 2009.
[18] Medical implantable RF transceiver ZL70101 data sheet Zarlink Semiconductor., Ottawa, ON, Canada, Oct. 2006.
[19] Y. T. Lin, T. Wang, and S. S. Lu, “A 0.5V 3.1mW Fully Monolithic OOK Receiver for Wireless Local Sensor Network,” IEEE Asia Solid-State Circuits Conference,Taipei, Taiwan, pp. 373-376, Nov.2005.
[20] C. M. Lee, T. C. Yo, F. J. Huang, and C. H. Luo, “Dual-resonant π-shape with double L-strips PIFA for implantable biotelemetry”, IEE Electronics Letters., Vol.44, No. 14, pp. 837-838, Jul. 2008.
[21] C. M. Lee, T. C. Yo, F. J. Huang, and C. H. Luo, “Bandwidth enhancement of planar inverted-F antenna for implantable biotelemetry ” Microwave and Optical Technology Letters, Vol. 51, No. 3, pp. 749-752, Mar. 2009.
[22] Texas Instruments, CC1100 Low-Cost Low-Power Sub-1GHz RF Transceiver Data Sheet Rev. C, SWRS038C, May 2008.
[23] M. M. Ahmadi and G. A. Jullien, "A Wireless-Implantable Microsystem for Continuous Blood Glucose Monitoring," IEEE Transactions on Biomedical Circuits and Systems, Vol. 3, No. 3, pp. 169-180, 2009.
[24] M. Lambrechts and W. Sansen, “Biosensors: microelectrochemical devices” Institute of Physics Publishing Bristol, Philadelphia and New York, 1992
[25] A. J. Bard and L. R. Faulkner, Electrochemical Methods: Fundamentals and Applications, 2nd ed. Wiley, 2001.
[26] Chia-Lin Chang, Fu-Jhuan Huang, Chien-Ming Lee, Wei-Che Ma, and Ching-Hsing Luo, “Novel Triple-Band Biotelemetry System with Miniaturized Antenna for Implantable Sensing Applications,” IEEE SENSORS 2010 Conference, Waikoloa Hawaii USA, pp. 104-107, Nov. 2010
[27] Texas Instruments, CC2500 Low-Cost Low-Power Sub-1GHz RF Transceiver Data Sheet Rev. C, SWRS040C, May 2008
[28] Texas Instruments, CC2500 - Wake-On-Radio Data Sheet, SWRA126A, Mar. 2008.
[29] A. Alesanco, S. Olmos, R. Istepanian, and J. Garcia, "A novel real-time multilead ECG compression and de-noising method based on the wavelet transform," Proceedings Computers in Cardiology, pp. 593-596, Sept. 2003.
[30] C. J. James and C. W. Hesse, “Independent component analysis for biomedical signals,” Physiological Measurement, Vol. 27, No.1, pp. R15–R39, Feb. 2005.
[31] C. J. James and O. J. Gibson, “Temporally constrained ICA: An application to artifact rejection in electromagnetic brain signal analysis,” IEEE Trans. Biomed. Eng., Vol. 50, No. 9, pp. 1108–1116, Sep. 2003.
[32] H. A. Miller, D. C. Harrison, “Biomedical Electrode Technology,” Academic Press, Inc., 1974.
[33] R. S. H. Istepanian and A. A. Petrosian, “Optimal zonal wavelet-based ECG data compression for a mobile telecardiology system,” IEEE Transactions on Information Technology in Biomedicine, Vol. 4, No. 3, pp. 200–211, Sep. 2000.
[34] Chen-Ming Hsu, Wei-Tin Liao, Ching-Hsing Luo, Tse-Chuan Chou “The 2.4GHz biotelemetry chip for healthcare monitoring system” Sensors and Actuators A: Physical, Vol. 139, No.1-2, pp. 245-252, Sep. 2007
[35] P. Griss, P. Enoksson, H. K. Tolvanen-Laakso, P. Merilainen, S.Ollmar, and G Stemme, “Micromachined Electrodes for Bio-potential Measurements,” Journal of Microelectromechanical Systems, “ Vol. 10, No. 1, pp. 10-16, 2001.
[36] C.L. Chang, S-C Lai, C.M. Hsu, C.W. Chang ,C.H. Luo and J.C. Chiou,”A Power-Efficient Wireless Biotelemetry for MEMS Sensing Physiological Signal Analysis,” Asia-Pacific Conference on Transducers and Micro-Nano Technology, June 2008.
[37] P. Griss, et al., "Micromachined barbed spikes for mechanical chip attachment," Sensors and Actuators A: Physical, Vol. 95, No. 2-3, pp. 94-99, Jan. 2002.
[38] Joseph J. Carr, John M. Brown, “Introduction to Biomedical Equipment Technology”, Fourth Edition, Prentice Hall, 2001
[39] J. C. Chiou, Li-Wei Ko, Chin-Teng Lin, Chao-Ting Hong, Tzyy-Ping Jung, “Using Novel MEMS EEG Sensors in Detecting Drowsiness Application,” IEEE Biomedical Circuits and Systems Conference, 2006
[40] P. Griss, H. Tolvanen-Laakso, P. Meriläinen, and G. Stemme., "Characterization of micromachined spiked biopotential electrodes," IEEE Transactions on Biomedical Engineering,, Vol. 49, No. 6, pp. 597-604, Jun. 2002.
[41] B. A. Taheri, et al., "A dry electrode for EEG recording," Electroencephalography and Clinical Neurophysiology, Vol. 90, pp. 376-383, No.5, 1994.
[42] R. R. Harrison, et al., "A Low-Power Integrated Circuit for a Wireless 100-Electrode Neural Recording System," IEEE Journal of Solid-State Circuits, Vol. 42, No.1, pp. 123-133, Jan. 2007.
[43] T. Dension, K. Consoer, A. Hachenburg, and W. Santa, 〝A 2.2uW 94nv/√Hz, Chopper -Stabilized Instrumentation Amplifier For EEG Detection In Chronic Implants,” in IEEE International Solid-State Circuits Conference, Dig. Tech, Papers, pp.162-594, 2007.
[44] J. Aziz, R. Genov, M. Derchansky, B. Bardakjian, and P. Carlen, "256-Channel Neural Recording Microsystem with On-Chip 3D Electrodes," Solid-State Circuits Conference, in IEEE International Solid-State Circuits Conference, Dig. Tech, Papers, pp. 160-594, 2007.
[45] M. Teplan, "Fundamentals of EEG measurement", Measurement Science Review, Vol. 2, pp.1 - 11 , 2002.
[46] M. J. Burke and D. T. Gleeson, "A micropower dry-electrode ECG preamplifier," IEEE Transactions on Biomedical Engineering,, Vol. 47, No.2 pp. 155-162, Feb. 2000.
[47] R. Pallas-Areny and J. G. Webster, "AC instrumentation amplifier for bioimpedance measurements," IEEE Transactions on Biomedical Engineering,, Vol. 40,No.8, pp. 830-833, Aug. 1993.
[48] E. M. Spinelli, R. Pallàs-Areny, and M. A. Mayosk, "AC-coupled front-end for biopotential measurements," IEEE Transactions on Biomedical Engineering,, Vol. 50, No.3, pp. 391-395, Mar. 2003.
[49] Enrique M. Spinelli, N. H. Martínez, M. A. Mayosky and R.Pallàs-Areny, "A novel fully differential biopotential amplifier with DC suppression," IEEE Transactions on Biomedical Engineering,, Vol. 51, No.8, pp. 1444-1448, Aug. 2004.
[50] M. S. J. Steyaert and W. M. C. Sansen, "A micropower low-noise monolithic instrumentation amplifier for medical purposes," IEEE Journal of Solid-State Circuits, Vol. 22,No.6, pp. 1163-1168, Dec. 1987.
[51] Khan, A.A., Al-Turaigi, M.A. and Ei-Ela, M.A., "An improved current-mode instrumentation amplifier with bandwidth independent of gain," Instrumentation and Measurement, IEEE Transactions on, Vol. 44,No.4, pp. 887-891, Aug. 1995.
[52] A. P. Brokaw and M. P. Timko, "An improved monolithic instrumentation amplifier," IEEE Journal of Solid-State Circuits, Vol. 10, Ni.6, pp. 417-423, Dec. 1975.
[53] R. Martins, S. Selberherr, and F. A. Vaz, "A CMOS IC for portable EEG acquisition systems," IEEE Transactions on Instrumentation and Measurement, Vol. 47, No.5, pp. 1191-1196, Oct. 1998.
[54] Franco, S. Design With Operational Amplifiers And Analog Integrated Circuits, 3rd ed.; McGraw-Hill, pp. 79-85, 2001.
[55] Refet Firat Yazicioglu, Tom Torfs, Patrick Merken, Julien Penders, Vladimir Leonov, Robert Puers, Bert Gyselinckx, and Chris Van Hoof, "Ultra-low-power biopotential interfaces and their applications in wearable and implantable systems," Microelectronics Journal, Vol. 40, No.9, pp. 1313-1321, Sep. 2009.
[56] R. R. Harrison and C. Charles, "A low-power low-noise CMOS amplifier for neural recording applications," IEEE Journal of Solid-State Circuits, Vol. 38, pp. 958-965, Jun. 2003.
[57] G. Nicollini and C. Guardiani, " A 3.3-V 800-nVrms noise, gain-programmable CMOS microphone preamplifier design using yield modeling technique," IEEE Journal of Solid-State Circuits, Vol. 28, pp. 915-921, Aug. 1993.
[58] K. A. Ng and P. K. Chan, "A CMOS analog front-end IC for portable EEG/ECG monitoring applications," IEEE Transactions on Circuits and Systems I: Regular Papers, Vol. 52, pp. 2335-2347, Nov. 2005.
[59] E. Sackinger and W. Guggenbuhl, "A versatile building block: the CMOS differential difference amplifier," IEEE Journal of Solid-State Circuits, Vol. 22, pp. 287-294, Apr. 1987.
[60] Uranga, A.; Navarro, X., and Barniol, N., "Integrated CMOS amplifier for ENG signal recording," IEEE Transactions on Biomedical Engineering,, Vol. 51, No.12, pp. 2188-2194, Dec. 2004.
[61] C. C. Enz and G. C. Temes, "Circuit techniques for reducing the effects of op-amp imperfections: autozeroing, correlated double sampling, and chopper stabilization," Proceedings of the IEEE, Vol. 84, No.11, pp. 1584-1614, Nov. 1996.
[62] C. Enz, E. Vittoz, and F.Krummenacher, "A CMOS chopper amplifier," IEEE Journal of Solid-State Circuits, Vol. 22, No.3, pp. 335-342, Jun. 1987.
[63] C. W. Chang and J. C. Chiou, "Surface-mounted dry electrode and analog-front-end systems for physiological signal measurements," in Life Science Systems and Applications Workshop, 2009. LiSSA 2009. IEEE/NIH, 2009, pp. 108-111.
[64] S. Mortezapour and E. K. F. Lee, "A 1-V, 8-bit successive approximation ADC in standard CMOS process," IEEE Journal of Solid-State Circuits, Vol. 35,No4., pp. 642-646, Apr. 2000.
[65] E. Culurciello and A. G. Andreou, " An 8-bit 800 uw 1.23-MS/s Successive Approximation ADC in SOI CMOS," IEEE Transactions on Circuits and Systems Part II: Express Briefs, Vol. 53, No.9, pp. 858-861, Sep. 2006.
[66] K. Balasubramanian, "Improving the resolution of selected ADCs," IEEE Transactions on Consumer Electronics, Vol. 37, No.1, pp. 81-85, Feb. 1991.
[67] Jin-Fu Lin, Soon-Jyh Chang and Chih-Hao Huang, "A 10-bit 12-MS/s successive approximation ADC with 1.2-pF input capacitance," in Solid-State Circuits Conference, 2009. A-SSCC 2009. IEEE Asian, 2009, pp. 157-160.
[68] E. Culurciello and A. Andreou, "An 8-bit, 1mW successive approximation ADC in SOI CMOS," in Circuits and Systems, 2003. ISCAS '03. Proceedings of the 2003 International Symposium on, 2003, pp. I-301-I-304 Vol.1.
[69] J. Sauerbrey, D. Schmitt-Landsiedel, and. R. Thewes, "A 0.5-V 1-uW successive approximation ADC," IEEE Journal of Solid-State Circuits, Vol. 38, No.7, pp. 1261-1265, Jul. 2003.
[70] Scott, M.D., Boser, B.E. and Pister, K.S.J.; , "An ultralow-energy ADC for Smart Dust," IEEE Journal of Solid-State Circuits, Vol. 38, No.7, pp. 1123-1129, Jul. 2003.
[71] L. Yan, N. Cho, J. Yoo, B. Kim, and H.-J. Yoo, "A two-electrode 2.88nJ/conversion biopotential acquisition system for portable healthcare device," presented at the Solid-State Circuits Conference, 2008. A-SSCC '08. IEEE Asian, 2008.
[72] K. Hadidi, et al., "An 8-b 1.3-MHz successive-approximation A/D converter," IEEE Journal of Solid-State Circuits, Vol. 25, pp. 880-885, 1990.
[73] S. Mortezapour and E. K. F. Lee, "A 1-V, 8-bit successive approximation ADC in standard CMOS process," IEEE Journal of Solid-State Circuits, Vol. 35, No4., pp. 642-646, Apr. 2000.
[74] H. C. Chow, B. W. Chen, H. C. Chen, and W. S. Feng, "A 1.8 V, 0.3 mW, 10-bit SA-ADC with new self-timed timing control for biomedical applications," in Circuits and Systems, 2005. ISCAS 2005. IEEE International Symposium on, 2005, pp. 736-739 Vol. 1.
[75] 黃嘉玄, 國立成功大學電機所碩士論文“用於生醫訊號擷取之低功率12位元連續漸近式類比數位轉換器”, 98年7月。
[76] Texas Instruments, MSP430F149 Texas Instruments Mixed Signal ProcessorSD, 2000.
[77] SanDisk SD Card, Industrial Grade, No. 80-36-0-285, 2000.
[78] Texas Instruments, Interfacing the MSP430 with MMC/SD Flash Memory Cards, Jan. 2006.
[79] Microsoft Corporation, “FAT: General Overview of On-Disk Format”, Version 1.03, December 6, 2000.
[80] A. Karilainen, S. Hansen, J. Muller, Dry and capacitive electrodes for long-term ECG-monitoring, Eighth Annual Workshop on SemiconductorAdvances for Future Electronics, 2005, pp. 155–161.
[81] J.-Y. Baek, J.-H. An, J.-M. Choi, K.-S. Park, and S.-H. Lee, “Flexible polymeric dry electrodes for the long-term monitoring of ECG,” Sensors and Actuators A: Physical, Vol. 143, No. 2, pp. 423–429, May 2008
[82] D. Prutchi, A. Sagi-Dolev, “Newtechnologies for in-flight pasteless bio-electrodes,” Aviation, space, and environmental medicine , Vol.64, No.6, pp.552–556, Jun. 1993.
[83] G. Ruffini, S. Dunne, E. Farr´es, J. Marco-Pallar´es, C. Ray, E. Mendoza, R. Silva, C. Grau, “A dry electrophysiology electrode using CNT arrays”, Sensors and Actuators A: Physical, Vol. 132, No. 2, pp.34–41, Nov. 2006
[84] A. Folch, M. Toner, “Cellular micropatterns on biocompatible materials”, Biotechnol. Prog. Vol. 14, pp.388–392, 1998.
[85] S.G. Charati, S.A. Stern, Diffusion of gases in silicone polymers: molecular dynamics simulations, Macromolecules, Vol. 31, pp.5529–5535, 1998.
[86] Agilent, Agilent 4294A Precision Impedance Analyzer Programming Manual, 2003.
[87] Texas Instruments, TPS797XX Data Sheet, SLVS332G, Nov. 2009.
校內:2021-12-31公開