| 研究生: |
吳俊毅 Wu, Chun-I |
|---|---|
| 論文名稱: |
高效能濺鍍法製備鉭/二氧化鉿-二氧化鈦/矽相關尖端閘極樣品組及其介電/介面特性之研究 Dielectric and interfacial characterizations of the Ta/HfO2-TiO2/Si related composition spreads using sputtering for the advanced gate stack |
| 指導教授: |
張高碩
Chang, Kao-Shuo |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 材料科學及工程學系 Department of Materials Science and Engineering |
| 論文出版年: | 2013 |
| 畢業學年度: | 101 |
| 語文別: | 英文 |
| 論文頁數: | 100 |
| 中文關鍵詞: | 高介電材料氧化層 、金屬氧化物半導體 、組合式材料法 、二氧化鉿 、二氧化鈦 |
| 外文關鍵詞: | High-k materials oxide layer, MOS, Combinatorial approach, HfO2, TiO2 |
| 相關次數: | 點閱:80 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本實驗利用高效能濺鍍系統於矽基板上成長二氧化鉿-二氧化鈦相關高效能組合式高介電氧化物樣品組,並製作成金屬氧化物半導體結構,探討其結構-成分-性質之關係。
從單一成分二氧化鉿與二氧化鈦試片,我們可以發現其均具有良好之厚度梯度變化,此顯示了我們可以製作高可靠度之二氧化鉿-二氧化鈦組合式高介電氧化層薄膜樣品組。利用穿透式電子顯微鏡得知其非晶相氧化層厚度約十奈米,且鈦之成分比例由純二氧化鉿區域線性地增加至純二氧化鈦區域。其介面層厚度約兩奈米,且成分主要為非晶相之二氧化矽並伴隨極少量之金屬矽化物。
經計算後可知其介電常數隨著二氧化鈦成份之增加可由13提升至約50,但其相對應之漏電流密度也會持續地由10-8上升至10-4 (面積/公分2 )。我們得知其最佳成分為0.69二氧化鉿-0.31二氧化鈦,其介電常數約為42;等效氧化層厚度約0.9奈米 ,並擁有可信賴之漏電流密度約10-6(面積/公分2 )與電容-電壓曲線。
藉由參雜氮進入此二氧化鉿-二氧化鈦相關高效能組合式高介電氧化物樣品組,可以大幅提升其二氧化鈦之成分使試片之組成成份為0.32二氧化鉿-0.68二氧化鈦,並仍然保有良好之電容-電壓曲線。 雖然參雜氮後電容值會稍微降低但卻可改善其漏電流密度約兩個級數。此意味著此氮參雜之0.32二氧化鉿-0.68二氧化鈦試片組為一極具有潛力之成分比應用於先進金屬閘極。
In this thesis, HfO2-TiO2 related composition spreads are deposited on Si substrates as the dielectric layers for MOS structure devices using the state-of-the-art combinatorial sputtering system. The structures-properties -compositions relationship was studied.
We have exhibited our capability for making good quality thickness gradients (wedges) of both single composition layers and HfO2-TiO2 composition spreads. The thicknesses of amorphous oxide layers are determined to be around 10 nm across the composition spread sample using high resolution transmission electron microscopy (HRTEM). Ti ratios are systemically increasing from HfO2-rich to TiO2-rich, extracted from the electron probe energy dispersion spectroscopy (EDX) analysis. The interfacial layers between the oxides and the Si substrate are 2nm, consisting of HfSiO-rich (close to HfO2-rich) to TiSiO-rich (close to TiO2-rich). The extracted dielectric constant values across the HfO2-TiO2 composition spread are from 13 to 50, with increasing Ti ratio. The corresponding leakage current densities (JL) are continuously increasing from 10-8 to 10-4 (A/cm2 ). We found the compositions near 0.31TiO2 possesses the dielectric constant of 42, while maintains reasonably low leakage current density (10-6 A/cm2 ). The calculated EOT of this composition was 0.9 nm.
For the N2-doped HfO2-TiO2 composition spread samples, we found that good C-V characteristics could be obtained with much higher TiO2 contents (up to 0.69TiO2), which is usually too leaky to show a good accumulation behavior in a no N2 incorporation samples. Their corresponding JL was also found that orders lower than that of no N2 doped samples. Although the map of dielectric constants yet to be determined, it potentially indicates a better dielectric properties could be obtained from the N2 doped HfO2-TiO2 composition spreads.
[1]R.M.C. de Almeida and I.J.R. Baumvol, “Reaction-diffusion in high-κdielectrics on Si”, Surf. Sci. Rep. 49, 1 (2003)
[2] S. M. Sze, Physics of Semiconductor Devices, 2nd ed. (Wiley, New York, 1981)
[3] D. A. Neamen., “Semiconductor physics and devices :basic principles”, (Irwin, 1992)
[4] H.R. Huff, D.C. Gilmer (Eds.), “High Dielectric Constant Materials”, Springer, 2005.
[5] The International Technology Roadmap for Semiconductor: 2003 Ed. (2004_update)
[6] J. D. Plummer and P. B. Griffin, “Material and process limits in silicon VLSI technology”, Proc. IEEE 89, 240 (2001)
[7] Y. Taur, “The incredible shrinking transistor”, IEEE Spectrum 7, 25 (1999)
[8] Y. C. Yeo, T. J. King and Chenming Hu, “MOSFET Gate Leakage Modeling and Selection Guide for Alternative Gate Dielectrics Based on Leakage Considerations”, Trans.Electron Devices 50, 1027 (2003)
[9] D. G. Schlom and J. H. Haeni, “A thermodynamic approach to selecting alternative gate dielectrics”, MRS Bulletin Mar, 198 (2002)
[10] C. A. Billman, P. H. Tan, K. J. Hubbard, and D. G. Kanan, “Alternate gate oxides for silicon MOSFETs using high k dielectrics”, Mater. Res. Soc. Symp. Proc. 567, 409 (1999)
[11] G. D. Wilk, R. M. Wallace and J. M. Anthony, “High-k gate dielectrics: Current status and materials properties considerations”, J. Appl. Phys. 89, 5243 (2001)
[12] K. Yamamoto, S. Hayashi, M. Kubota, and M. Niwa, “Effect of Hf metal predeposition on the properties of sputtered HfO2/Hf stacked gate dielectrics”, Appl. Phys. Lett. 81, 2053(2002)
[13] S. Desgreniers, K. Lagarec, “High-density ZrO2 and HfO2: Crystalline structures and equations of state”, Phys. Rev. B 59 (1999) 8467.
[14] J.E. Lowther, J.K. Dewhurst, J.M. Leger, J. Haines, “Relative stability of ZrO2 and HfO2 structural phases”, Phys. Rev. B 60,14485 (1999).
[15]T. B. Massalski, J. L. Murray, L. H. Bennet, H. Baker, “Binary Alloy Phase Diagrams”, (American Society for metals, Ohio, 1987)
[16] J. McPherson, J.Y. Kim, A. Shanware, H. Mogul, “Thermochemical description of dielectric breakdown in high dielectric constant materials”, Appl. Phys. Lett. 82, 2121 (2003).
[17] H. Takahashi, S. Toyoda, J. Okabayashi, H. Kumigashira, M. Oshima, Y. Sugita, G.L.Liu, Z. Liu, K. Usuda, “Chemical reaction at the interface between polycrystalline Si electrodes and HfO2/Si gate dielectrics by annealing in ultrahigh vacuum”, Appl. Phys. Lett. 87, 012903 (2005).
[18] M.A. Caravaca, R.A. Casali, “Ab initio localized basis set study of structural parameters and elastic properties of HfO2 polymorphs”, J. Phys.: Condens. Matter 17 (2005) 5795.
[19] J.E. Jaffe, R.A. Bachorz, M. Gutowski, “Low-temperature polymorphs of ZrO2 and HfO2: A density-functional theory study”, Phys. Rev. B 72 (2005) 144107.
[20] H. Takeuchi, D. Ha, T.J. King, “Observation of bulk HfO2 defects by spectroscopic ellipsometry”, J. Vac. Sci. Technol. A 22,1337 (2004)
[21] S.A. Campbell, D.C. Gilmer, X.C. Wang, M.T. Hsieh, H.S. Kim, W.L. Gladfelter, J.H.Yan, IEEE Trans. Electron Devices 44,104 (1997).
[22] M. Kadoshima, M. Hiratani, Y. Shimamoto, K. Torii, H. Miki, S. Kimura, T. Nabatame, “System and method for irrigating with aerated water”, Thin Solid Films 424,224 (2003).
[23] C.C. Ting, S.Y. Chen, D.M. Liu, “Structural evolution and optical properties of TiO2 thin films prepared by thermal oxidation of sputtered Ti films”, J. Appl. Phys. 88,4628 (2000).
[24] B. J. Chisholm and D. C. Webster, “Combinatorial approaches for the design of novel coating systems”, J. Coat. Technol. Res. 4, 1(2007).
[25] R. A. Dunlap, G. L. Sibley, F. N. Sy, and T. D. Hatchard, “Combinatorial material science studies of Fe-rich Fe–Al and Fe–Si thin films”, J. Alloys Compd. 470, 27 (2007).
[26] H. Koinuma, H. N. Aiyer, and Y. Matsumoto, ”Combinatorial solid state materials science and technology”, Sci. Technol.Adv. Mater. 1, 1 (2000).
[27] R. B. van Dover, L. F. Schneemeyer,R. M. Fleming, “Discovery of a useful thin-film dielectric using a composition-spread approach”, Nature 392, 162-164 (1998)
[28] X.-D. Xiang, X.-D. Sun, G. Briceño, Y. Lou,K.-A. Wang, H. Chang, W.G. Wallace-Freedman,S.-W. Chen, and P.G. Schultz, Science 268 (1995)
[29] J. Choi, R. Puthenkovilakam, J.P. Chang, “Effect of nitrogen on the electronic properties of hafnium oxynitrides”, J. Appl. Phys. 99,053705 (2006).
[30] Ichiro Takeuchi, Robert Bruce van Dover,and Hideomi Koinuma, “Combinatorial Synthesis and Evaluation of Functional Inorganic Materials Using Thin-Film Techniques”, MRS BULLETIN( 2002 )
[31] M. C. Cisneros-Morales and C. R. Aita, “The effect of nanocrystallite size in monoclinic HfO2 films on lattice expansion and near-edge optical absorption”, Appl. Phys. Lett. 96, 191904 (2010)
[32] C. V. Ramana, K. Kamala Bharathi, A. Garcia, and A. L. Campbell, “Growth Behavior, Lattice Expansion, Strain, and Surface Morphology of Nanocrystalline, Monoclinic HfO2 Thin Films”, J. Phys. Chem. C.116, 9955−9960 (2012)
[33] Flora M. Li, Bernhard C. Bayer, Stephan Hofmann, James D. Dutson, and Steve J. Wakeham, “High-k (k = 30) amorphous hafnium oxide films from high rate room temperature deposition”, Appl. Phys. Lett. 98, 252903 (2011)
[34] Massiel Cristina Cisneros-Morales and Carolyn Rubin Aita, “Phase selection and transition in Hf-rich hafnia-titania nanolaminates”, J. Appl. Phys. 109, 123523 (2011)
[35] M. Liu, L. D. Zhang, G. He, X. J. Wang, and M. Fang, “Effect of Ti incorporation on the interfacial and optical properties of HfTiO thin films”, J. Appl. Phys. 108,024102 (2010)
[36] Cong Ye, Hao Wang, Jun Zhang, Yun Ye, and Yi Wang, “Composition dependence of band alignment and dielectric constant for Hf1xTixO2 thin films on Si (100)”, J. Appl. Phys. 107, 104103 (2010)
[37] Cong Ye, Yi Wang, Jun Zhang, Jieqiong Zhang, Hao Wang, “Evidence of interface conversion and electrical characteristics improvement of ultra-thin HfTiO films upon rapid thermal annealing”, Appl. Phys. Lett. 99, 182904 (2011)
[38] M. Liu, M. Fang, X. J. Wang, Y. Y. Luo, H. M. Wang, “Interfacial, optical properties and band offsets of HfTiON thin films with different nitrogen concentrations”, J. Appl. Phys. 110, 024110 (2011)
[39] Xiang X-D. Appl Surf Sci,189:188 (2002)
[40] Yukio Yamamotoa, Ryota Takahashib, Yuji Matsumotoc, Toyohiro Chikyowa, Hideomi Koinuma, “Mathematical design of linear action masks for binary and ternary composition spread film library”, Appl Surf Sci, P 9–13 (2004)
[41] Hideomi Koinuma, Ichiro Takeuchi, “Combinatorial solid-state chemistry of inorganic materials”, Nature Materials 3, 429 - 438 (2004)
[42] K.-S. Chang, M. L. Green, P. K. Schenck, E. Venkatasubramanian, and I. Takeuchi, “High-throughput Screening of Y2O3-TiO2 High-k Dielectric Materials for Advanced Gate Stacks”, Appl. Phys. Lett. 2010.
[43] K.-S. Chang, M. L. Green, H. M. Lane, I. Levin, C. Jaye, D. A. Fischer, J. R. Hattrick-Simpers, I. Takeuchi, and S. De Gendt, “Electrical Characterization of Ta-C-N/HfO2 Advanced Gate Stacks Using Combinatorial Methodology”, Appl. Phys. Lett. 2010.
[44] A. Callegari, E. Cartier, M. Gribelyuk, H. F. Okorn-Schmidt, and T. Zabel, “Physical and electrical characterization of Hafnium oxide and Hafnium silicate sputtered films”, J. Appl. Phys. 90, 6466 (2001)
[45]Takashi Fuyuki, Hiroyuki Matsunami, “Electric Properties of the Interface between Si and TiO2 Deposited at Very Low Temperature”, J. Appl. Phys. Vol.23, No. 9,pp.1288 -1291(1986)
校內:2018-08-16公開