簡易檢索 / 詳目顯示

研究生: 許明湘
Hsu, Ming-Hsiang
論文名稱: 德基水庫泥砂管理策略之經濟分析
Economic Analysis of Sediment Management Strategies for Techi Reservoir
指導教授: 王筱雯
Wang, Hsiao-Wen
學位類別: 碩士
Master
系所名稱: 工學院 - 水利及海洋工程學系
Department of Hydraulic & Ocean Engineering
論文出版年: 2019
畢業學年度: 107
語文別: 中文
論文頁數: 97
中文關鍵詞: 德基水庫泥砂管理策略RESCON2
外文關鍵詞: Techi Reservoir, sediment management strategy, RESCON2
相關次數: 點閱:97下載:9
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 德基水庫從1974年建壩以來,缺乏有效的泥砂管理策略,長期下來,因泥砂淤積導致庫容逐漸損失,目前水庫淤積率約為25%,屬於中度淤積,加上氣候變遷日益嚴重,降水強度和泥砂量的增加會造成水庫淤積率上升,而關於水庫泥砂管理的文獻主要集中在工程方面,在經濟學方面則是寥寥無幾,故本研究將分析及探討不同泥砂策略的可行性並結合經濟面向,幫助決策者能在有限經費的限制之下,擬定最合宜的治理方案,創造出最大的效益。因此本研究使用RESCON2模式,設計不同泥砂管理策略的操作方案和在氣候變遷的影響下,瞭解其經濟效益及泥砂管理策略的效率對於水庫壽命的影響。另外為了確保在實施沖砂時是否能有效降低至指定水位,本研究建置德基水庫水文概念性模式模擬沖砂時的水位情況。
    本研究使用自1976年到2016年的水庫幾何資訊、水砂條件、以及實際水庫日運轉紀錄等資料來建置德基水庫RESCON2模式,並進行沖砂、疏浚與繞庫排砂在不同方案下的模擬,包含調整沖砂時的水位、流量與持續時間、調整不同的年最大疏浚量、調整實施繞庫排砂的持續時間並搭配不同的排洪排砂比效率,模擬結果發現僅沖砂能使水庫水續且經濟結果最佳,在氣候變遷影響下亦是如此,且在水文概念模式的假設下得知需沖砂達90天以上才能將水位有效降低至指定水位;而疏浚效率看似高於繞庫排砂,實質上在疏浚的可行性仍有待討論,外加繞庫排砂的模擬結果為最保守值,其清淤量仍需靠操作時間及技術才能決定。另外越早實施排砂策略能使水庫壽命延長,經濟結果越高,但在繞庫排砂方面因折現率因素,造成越晚實施繞庫排砂的經濟結果較高。在模式中為使用隨著時間下降的折現率6%,折現率的選擇影響其經濟結果,需考慮經濟,工程,氣候變遷等問題,制定一個適當的折現率。

    Since the Techi Reservoir was built in 1974, has no sediment management strategy. The reservoir has lost 25% of its storage capacity due to sedimentation. To find the most efficient sediment management strategy, it is important to incorporate economic analysis in order to compare the costs and benefits of different strategies. This study used the RESCON2 model to simulate reservoir life and economic benefits under different scenarios for three different strategies: flushing, dredging and bypass method, by calculating costs and simulating long-term effects in order to help decision-makers formulate the most appropriate management plans. The different scenarios included changing the implementation scheduling of each method, and parameters that affect the efficiency of the sediment management strategy. In addition, this study built a hydrological conceptual model to simulate how much time and what parameters are needed to bring the water level down to the level needed for flushing.
    The RESCON2 simulation results show that only the flushing method will extend the reservoir’s life by more than 300 years. Flushing also resulted in the highest aggregate net present value, converted from the maximum water yield in the remaining storage capacity, which came out to a total value of about 3.2 billion US dollars. In addition, the hydrological conceptual model shows that a fixed water level of 1315m and a flow of 57cms, it will take at least 90 days to effectively reduce the water level to the specified level needed for flushing to occur. This means that flushing is feasible, but requires planning and preparation.The aggregate net present value of dredging and bypass are about 2.3 billion and 2 billion US dollars. Because the model results show that the amount of sediment able to be desilted by dredging is more than bypass, and the cost of dredging is significantly lower than bypass due to the high construction costs needed for bypass, the efficiency of dredging seems to be higher. However, this may not be the case in all scenarios. The simulation result for bypass is the more conservative than dredging as there are more factors which must be assumed. For instance, the amount of desilting possible by bypass is determined by the operation time and the technology used to discharge the sediment. Another aspect of this research that requires further discussion is the declining discount rate. This research used a declining discount rate of 6%, as recommended by the World Bank and Taiwan experts. But, it may be important to consider economics, hydraulic engineering, and climate change together to check that this is in fact an appropriate value.

    中文摘要 I 英文摘要 II 致謝 IX 目錄 X 表目錄 XIII 圖目錄 XV 第一章 緒論 1 1.1前言 1 1.2研究動機目的 2 1.3論文架構 2 第二章 文獻回顧 4 2.1水庫泥砂管理策略 4 2.1.1沖砂 8 2.1.2疏浚 10 2.1.3繞庫排砂 11 2.1.4總結 14 2.2 Reservoir Conservation模式 15 第三章 研究區域與方法 19 3.1研究區域 19 3.1.1德基水庫 19 3.1.2地文 20 3.1.3水文 22 3.1.4氣候 23 3.2資料蒐集 23 3.2.1庫容 24 3.2.2流量 24 3.2.3粒徑調查 25 3.2.4泥砂濃度 27 3.3水文概念模式 29 3.3.1模式建置 30 3.3.2水庫運用規線 32 3.3.3模式率定 33 3.4 RESCON2模式 35 3.4.1 RESCON2模式簡介 35 3.4.2模式架構 36 3.4.3模式限制 39 3.4.4模式建置與參數設定 40 3.4.5模式率定與驗證 48 3.4.6方案設計 60 第四章 結果與討論 65 4.1 泥砂管理策略 65 4.1.1 沖砂 65 4.1.2 疏浚 80 4.1.3 繞庫排砂 81 4.1.4 不同泥砂管理策略之綜合探討 86 4.2 氣候變遷下的影響 89 4.3 經濟敏感度分析 91 第五章 結論與建議 93 5.1 結論 93 5.2 建議 94 參考文獻 97

    1. Auel, C., & Boes, R. M. (2011). Sediment bypass tunnel design–review and outlook. Dams and reservoirs under changing challenges, 40312.
    2. Annandale, G. W. (2015). Policy considerations for sustainable hydropower: Reliability, climate change and sedimentation. Proceedings of the HYDRO.
    3. Annandale, G. W., Morris, G. L., & Karki, P. (2016). Extending the life of reservoirs: sustainable sediment management for dams and run-of-river hydropower. The World Bank.
    4. Auel, C., Kantoush, S. A., & Sumi, T. (2016). Positive effects of reservoir sedimentation management on reservoir life–examples from Japan. In 84th Annual Meeting of ICOLD.
    5. Chen, C. T. A., Liu, J. T., & Tsuang, B. J. (2004). Island-based catchment—The Taiwan example. Regional Environmental Change, 4(1), 39-48.
    6. Efthymiou, N. P., Palt, S., Annandale, G. W., & Karki, P. (2017). Reservoir Conservation Model: RESCON 2 Beta. Economic and Engineering Evaluation of Alternative Sediment Management Strategies, International Bank for Reconstruction and Development.
    7. Fukuda, T., Yamashita, K., Osada, K., & Fukuoka, S. (2012). Study on flushing mechanism of dam reservoir sedimentation and recovery of riffle-pool in downstream reach by a flushing bypass tunnel. In International Symposium on DAMS FOR A CHANGING WORLD–Need for Knowledge Transfer across the Generations & the World.
    8. Kondolf, G. M., Gao, Y., Annandale, G. W., Morris, G. L., Jiang, E., Zhang, J., ... & Hotchkiss, R. (2014). Sustainable sediment management in reservoirs and regulated rivers: Experiences from five continents. Earth's Future, 2(5), 256-280.
    9. McMahon, T., & Mein, R. G. (1978). Reservoir capacity and yield(Vol. 9). Elsevier.
    10. Morris, G. L., & Fan, J. (1998). Reservoir sedimentation handbook: design and management of dams, reservoirs, and watersheds for sustainable use. McGraw Hill Professional.
    11. Morris, G. L. (2015). Collection and Interpretation of Reservoir Data to Support Sustainable Use. In SEDHYD 2015, 10th Federal Interagency Sedimentation Conference.
    12. Morris, G. L., Hsiao-Wen Wang, Gong-Chang Yang, & Ming-Hsiang Hsu (2019). Evaluation of Sediment Management Strategies for Techi Reservoir in Taiwan. 3rd International Workshop on Sediment Bypass Tunnel.
    13. Nordhaus, W. D. (2007). A review of the Stern review on the economics of climate change. Journal of economic literature, 45(3), 686-702.
    14. National Reservoir Sedimentation and Sustainability Team (NRSST) (2018). Reservoir Sediment Management: Building a Legacy of Sustainable Water Storage Reservoirs. White Paper. Federal Advisory Committee on Water Information, Subcommittee on Sedimentation.
    15. Pitt, J. D., & Thompson, G. (1984). Impact of sediment on reservoir life. In Challenges in African hydrology and water resources: proceedings, Harare Symposium, July 1984/edited by DE Walling, SSD Foster, P. Wurzel. Wallingford, Oxfordshire: International Association of Hydrological Sciences, 1984.
    16. Palmieri, A., Shah, F., Annandale, G., & Dinar, A. (2003). Reservoir conservation volume I: the RESCON approach. Washington, DC: World Bank.
    17. Sumi, T., Okano, M., & Takata, Y. (2004, October). Reservoir sedimentation management with bypass tunnels in Japan. In Proc. 9th International Symposium on River Sedimentation (pp. 1036-1043).
    18. Stern, N., & Stern, N. H. (2007). The economics of climate change: the Stern review. cambridge University press.
    19. Sumi, T., & Kantoush, S. A. (2011). Comprehensive sediment management strategies in Japan: Sediment bypass tunnels. In Proceedings of the 34th World Congress of the International Association for Hydro-Environment Research and Engineering: 33rd Hydrology and Water Resources Symposium and 10th Conference on Hydraulics in Water Engineering (p. 1803). Engineers Australia.
    20. Stocker, T. (Ed.). (2014). Climate change 2013: the physical science basis: Working Group I contribution to the Fifth assessment report of the Intergovernmental Panel on Climate Change. Cambridge University Press.
    21. Van Rijn, L. C. (2013). Sedimentation of sand and mud in reservoirs in rivers.
    22. White, R. (2001). Evacuation of sediments from reservoirs. Thomas Telford.
    23. Wang, H. W., Kondolf, M., Tullos, D., & Kuo, W. C. (2018). Sediment management in Taiwan’s reservoirs and barriers to implementation. Water, 10(8), 1034.
    24. 中興工程顧問股份有限公司(2010),大甲溪發電廠德基水庫第3次整體安全評估,台灣電力股份有限公司。
    25. 中興工程顧問股份有限公(2011),氣候變遷下水庫排砂對策研究總報告,經濟部水利署。
    26. 水利署電子報(2015),石門水庫清淤作業及庫容維持策,經濟部水利署北區水資源局。
    27. 中興工程顧問股份有限公(2018),德基水庫第4次定期安全評估綜合報告,台灣電力股份有限公司。
    28. 中興工程顧問股份有限公(2018),德基水庫含砂水流運移與水庫減淤操作試驗研究(第一期),期末報告(修正一版),台灣電力股份有限公司大甲溪發電廠。
    29. 石門水庫阿姆坪防淤隧道工程計畫核定版(2014),經濟部水利署。
    30. 世界銀行的氣候知識網: http://sdwebx.worldbank.org/climateportal/
    31. 何彥廷(2018),阿公店水庫排砂操作策略探討,國立成功大學水利及海洋工程學系碩士論文。
    32. 林明仁(2010),全球暖化經濟學,台灣大學公共經濟研究中心。
    33. 夏邁定、程永華(1997),黑松林水庫泥砂處理技術的研究及應用,泥砂研究。
    34. 國立台灣大學(2013),融合多重雨量資訊於水庫集水區即時雨量推估及入庫流量預報技術之研究,經濟部水利署。
    35. 國立台灣海洋大學(2013),台灣地區主要河川流域水文與水理設計分析系統平台建立,經濟部水利署水利規劃試驗所。
    36. 焦恩澤、繆鳳舉、林秀芝(2008),水庫調水調砂,黃河水利出版社。
    37. 財團法人成大研究發展基金會(2017),曾文水庫取水斜塔前庭清淤工程第二期清淤計畫及檢驗(2/4)成果報告書,經濟部水利署南區水資源局。
    38. 游景雲、王元亨、楊智傑(2017),水利工程規劃決策評價概念探討成本效益分析,風險分析架構及風險控管,土木水利,44(5),17-34。
    39. 經濟部水利處水利規劃試驗所(2003),阿公店水庫防淤操作模型試驗及檢討計畫報告,經濟部水利處南區水資源局。
    40. 蔡秉修(2016),阿公店水庫空庫排砂效率之探討,國立成功大學水利及海洋工程學系碩士論文。

    下載圖示 校內:2022-08-23公開
    校外:2022-08-23公開
    QR CODE