簡易檢索 / 詳目顯示

研究生: 王宗斌
Wang, Tzong-Bin
論文名稱: 三五族氮化物光電元件特性改善之研究
Improved Nitride-based Optical and Electrical Devices
指導教授: 許渭州
Hsu, Wei-Chou
學位類別: 博士
Doctor
系所名稱: 電機資訊學院 - 微電子工程研究所
Institute of Microelectronics
論文出版年: 2007
畢業學年度: 95
語文別: 英文
論文頁數: 106
中文關鍵詞: 氮化鎵發光二極體異質結構電晶體
外文關鍵詞: HFET, GaN, LED
相關次數: 點閱:55下載:3
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 在本論文中,我們用有機金屬氣相磊晶系統成長三五族氮化物及其相關化合物之光電元件,包含發光二極體和高電子移動率電晶體。我們首先利用改變低溫緩衝層的退火時間,在藍寶石基板上得到高品質的氮化鎵磊晶層,在低濃度的矽摻雜時(濃度為1.1x1017cm-3),電子移動率可達622cm2(V-s)-1。爾後,為了提升發光二極體的發光效率,在多重量子井成長之前插入以氮化銦鎵/氮化鎵的超晶格結構,利用該超晶格結構產生的二微電子氣體降低發光二極體的串聯電阻,並且使得電流散佈得到較佳的均勻性,提高二極體的亮度。同時,將藍寶石基板背面拋光後,鍍上鈦金屬得到鏡面的效果,將原來背面射出的光線反射回來,可提升發光亮度約一點五倍。
    以有機金屬氣相磊晶系統成長的高移動率電晶體通常會有比較大的電晶體關閉特性,因此我們利用鎂(Mg)摻雜的電洞提供層來改善電晶體的關閉特性。但是因為電洞提供層跟未摻雜的氮化鎵磊晶層將形成一個PN接面,其所形成的內建電場會影響到電晶體通道中的電子移動率,因使我們成長不同厚度的通道層來研究該厚度對電晶體特性的影響。我們發現1800Å的厚度,電晶體有比較好的電子移動率及及本質增益。
    為了改善電晶體的電壓電流特性,我們在電晶體的歐姆接觸部份,利用活性離子蝕刻的方式,將高能隙的氮化鋁鎵能障層部分薄化,不但改善了電晶體的歐姆特性,也發現源極-汲極電流因此提升約33%,而電晶體的本質增益也提高了26%。進一部的探討後,我們發現氮化鎵材料的高飽和電場是造成氮化鋁鎵/氮化鎵異質結構電晶體有較高轉折電壓的主要原因。

    In this dissertation, the metal-organic chemical vapor deposition (MOCVD) was used for growth the III-V nitride based electronic and optical devices. High-quality GaN films are prepared by low-pressure metal-organic chemical vapor deposition (LP-MOCVD). In situ optical reflectance traces reveal that the ramping time from low temperature to high temperature in the growth of the nucleation layer significantly affects the surface roughness. The mobility of the lightly doped GaN is as high as 622cm2/V-s at a corresponding carrier concentration of 1.1x1017cm-3. After the preparation of high quality n-GaN films, the LEDs with an InGaN/GaN superlattice layer are studied. The experimental results demonstrate that the current spreading layer can improve output power and turn on voltage (Vf) by forming a two dimensional electron gas (2DEG).
    For reducing the pinch-off voltage of the AlGaN/GaN heterojunction field effect transistor, an Mg-doped insulating GaN layer is inserted to suppress the leakage current, improving the breakdown voltages and yielding excellent pinch-off characteristics. Finally, Al0.27Ga0.73N/GaN Ohmic-recessed heterostructure field-effect transistors (OR-HFETs) grown by low-pressure metal-organic chemical vapor deposition (LP-MOCVD) have been fabricated. Compared with the HFET without the ohmic-recessed process, the saturation current density, maximum extrinsic transconductance and RF characteristics of OR-HFET are significantly increased.

    Contents Abstract (In Chinese) -------------------------------------------------------------------- i Abstract (In English) -------------------------------------------------------------------- iii Contents ------------------------------------------------------------------------------------ v Table Caption ----------------------------------------------------------------------------- vii Figure Caption --------------------------------------------------------------------------- viii Chapter 1 Introduction 1.1 The History of Research on Nitride based III-V Semiconductors ---------------------------------------------------------------------------- 1 1.2 Overview of This Dissertation -------------------------------------------------- 4 Reference ----------------------------------------------------------------------------------- 7 Chapter 2 Annealing effect on the buffer layer of high-quality crystalline GaN 2.1 Introduction of Metal-organic Chemical Vapor Deposition ------------- 11 2.2 The In-situ Reflectance Monitoring System of Growing III-Nitride Relative Materials by MOCVD System ------------------------------------ 18 2.3 Annealing effect on the buffer layer of high-quality crystalline GaN ------------------------------------------------------------------------------------ 19 Reference ---------------------------------------------------------------------------------- 26 Chapter 3 Investigation of InGaN/GaN superlattice in Nitride-Based LEDs 3.1 Introduction of the Nitride-Based LEDs ------------------------------------ 35 3.2 Experiment ------------------------------------------------------------------------ 36 3.3 Results and Discussion ---------------------------------------------------------- 40 3.4 Conclusions ------------------------------------------------------------------------ 43 Reference ---------------------------------------------------------------------------------- 44 Chapter 4 Investigation of Channel Thickness on Al0.32Ga0.68N/GaN Heterostructure Field-Effect Transistors 4.1 Introduction ----------------------------------------------------------------------- 56 4.2 Devices structure and Fabrication Process --------------------------------- 57 4.3 Characterization and discussion ---------------------------------------------- 60 4.4 Conclusions ------------------------------------------------------------------------ 64 Reference ---------------------------------------------------------------------------------- 66 Chapter 5 Improved Al0.27Ga0.73N/GaN Heterostructure Field-Effect Transistors With Ohmic-Recesse Using Plasma Etching 5.1 Introduction of AlGaN/GaN heterostructure field-effect transistors -- 79 5.2 Devices structure and fabrication process ----------------------------------- 80 5.3 Characterization and discussion ---------------------------------------------- 81 5.4 Conclusions ------------------------------------------------------------------------ 87 Reference ---------------------------------------------------------------------------------- 88

    Chapter 1
    [1]. The series books of “SEMICONDUCTOR AND SEMIMETALS” V50, “Gallium Nitride” edited by J. I. Pankove. P1
    [2]. Shuji Nakamura, Takashi Mukai and Masayuki Senoh, “Candela-class high-brightness InGaN/AlGaN double-heterostructure blue-light-emitting diodes”, Appl. Phys. Lett. 64, 1687(1994).
    [3]. Shuji Nakamura, Takashi Mukai and Masayuki Senoh, “High-Power GaN P-N Junction Blue-Light-Emitting Diodes”, Jpn. J. Appl. Phys. 30, L1998 (1991)
    [4]. Shuji Nakamura, Masayuki Senoh, Shin-ichi Nagahama, Naruhito Iwasa, Takao Yamada, Toshio Matsushita, Hiroyuki Kiyoku and Yasunobu Sugimoto, “InGaN-Based Multi-Quantum-Well-Structure Laser Diodes”, Jpn. J. Appl. Phys., 35, L74 (1996)
    [5]. Su, Y.K.; Chang, S.J.; Chih-Hsin Ko; Chen, J.F.; Ta-Ming Kuan; Wen How Lan; Wen-Jen Lin; Ya-Tung Cherng; Webb, J. Webb, “InGaN/GaN light emitting diodes with a p-down structure”, IEEE Trans. Electron Devices, 49, 1361(2002)
    [6]. Chih-Hsin Ko, Yan-Kuin Su, Shoou-Jinn Chang, Ta-Ming Kuan, Chung-I Chiang, Wen-How Lan, Wen-Jen Lin and James Webb, “P-Down InGaN/GaN Multiple Quantum Wells Light-Emitting Diode Structure Grown by Metal-Organic Vapor-Phase Epitaxy”, Jpn. J. Appl. Phys., 41, 2489(2002)
    [7]. Wei-Chih Lai; Shoou-Jinn Chang; Yokoyam, M.; Jinn-Kong Sheu; Chen, J.F., “InGaN-AlInGaN multiquantum-well LEDs”, IEEE Photonics Technology Letters, 13, 559(2001).
    [8]. H. Morkoc: Beyond SiC! III-V nitride based heterostructures and devices, in SiC Materials and Devices, Semiconductor and Semimaterials, V52(Academic, San Diego, CA1990)
    [9]. H. Morkoc, “Nitride Semiconductors and Devives, 1999”
    [10]. Hadis Morkoç, Roberto Cingolani and Bernard Gil, “Polarization effects in nitride semiconductor device structures and performance of modulation doped field effect transistors”, Solid-State Electronics, 43, 1901(1999).
    [11]. Fabio Sacconi, Aldo Di Carlo, P. Lugli, and Hadis Morkoç, “Spontaneous and Piezoelectric Polarization Effects on the Output Characteristics of AlGaN/GaN Heterojunction Modulation Doped FETs”, IEEE Trans. Electron Devic, 48, 450(2001).
    [12]. P. M. Asbeck, E. T. Yu, S.S. Lau, G. J. Sullivan, J. Van Hove and J. Redwing, “Piezoelectric charge densities in AlGaN/GaN HFETs”, Electron. Lett., 33, 1230(1997).
    [13]. E. T. Yu, G. J. Sullivan, P. M. Asbeck, C. D. Wang, D. Qiao, and S. S. Lau, “Measurement of piezoelectrically induced charge in GaN/AlGaN heterostructure field-effect transistors”, Appl. Phys. Lett. 71, 2794(1997).
    Chapter 2
    [1] The series books of “SEMICONDUCTOR AND SEMIMETALS” V50, “Gallium Nitride” edited by J. I. Pankove. p12
    [2]. Garrido, J.A.; Calle, F.; Munoz, E.; Izpura, I.; Sanchez-Rojas, J.L.; Li, R.; Wang, K.L.; “Low frequency noise and screening effects in AlGaN/GaN HEMTs”, Electronics Letters. 34, 2357(1998).
    [3]. Sangwoo Seo; Lee, K.K.; Sangbeom Kang; Huang, S.; Doolittle, W.A.; Jokerst, N.M.; Brown, A.S.; Brooke, M.A.; “The heterogenous integration of GaN thin-film metal-semiconductor-metal photodetectors onto silicon”, Photonics Technology Letters, IEEE, 14, 185 (2002).
    [4]. Tigrn T. Mnatsaknov, Michael E. Levinshtein, Lobov I. Pomortseva et al. ”Carrier mobility model for GaN”, Solid-State Electronics, 47, 111(2003).
    [5]. H. M. Ng, D. Doppalapudi, T. D. Moustakas, N. G. Weimann and L. F. Eastman,” The role of dislocation scattering in n-type GaN films”, Appl. Phys. Lett. 73, 821 (1998).
    [6]. Masayoshi Umeno1, Takashi Egawa, Hiroyasu Ishikawa “GaN-based optoelectronic devices on sapphire and Si substrates”, Materials Science in Semiconductor Processing, 45, 677 (2001).
    [7]. Nakamura, S., “Blue light emitting laser diodes”, Thin Solid Films, 343-344, 345(1999).
    [8]. Nakamura, Shuji; Senoh, Masayuki; Nagahama, Shin-ichi; Iwasa, Naruhito; Yamada, Takao; Matsushita, Toshio; Kiyoku, Hiroyuki; Sugimoto et al. “Present status of InGaN/GaN/AlGaN-based laser diodes”, J. Crystal Growth. 189/190, 820(1998)
    [9]. Kim, Sunwoon; Oh, Jeongtak; Kang, Joongseo; Kim, Dongjoon; Won, Jonghak; Kim, Je Won; Cho, Hyung-Koun, “Two-step growth of high quality GaN using V/III ratio variation in the initial growth stage”, J. Crystal Growth, 262, 7(2004).
    [10]. Dong-Joon Kim, Yong-Tae Moon, Kwang-Soon Ahn, and Seong-Ju Park, “In situ normal incidence reflectance study on the effect of growth rate of nucleation layer on GaN by metalorganic chemical vapor deposition”, J. Vac. Sci. Technol. B 18, 140 (2000).
    [11]. J. Han, T.-B. Ng, R. M. Biefeld, M. H. Crawford, and D. M. Follstaedt, “The effect of H2 on morphology evolution during GaN metal-organic chemical vapor deposition”, Appl. Phys. Lett., 71, 3114 (1997).
    [12]. C. F. Lin, G. C. Chi, M. S. Feng, J. D. Guo, J. S. Tsang, and J. Minghuang Hong “The dependence of the electrical characteristics of the GaN epitaxial layer on the thermal treatment of the GaN buffer layer”, Appl. Phys. Lett., 68, 3758(1996).
    Chapter 3
    [1]. S. Nakamura, T. Mukai, and M. Senoh. J. Appl. Phys, 76, 8189(1994).
    [2]. A. P. Zhang, B. Luo, J. W. Johnson, F. Ren, J. Han, and S. J. Pearton, Appl. Phys. Lett. 79, 3636 (2001)
    [3]. C. S. Kim, H. K. Cho, C.-H. Hong, and H. J. Lee, Appl. Phys. Lett. 83, 1447, 2003
    [4]. Denbaars, S.P.; Proceedings of the IEEE Volume 85, Issue 11, Nov. 1997, P1740
    [5]. Hung-Wen Huang, C. C. Kao, J. T. Chu, H. C. Kuo, S. C. Wang, and C. C. Yu, , IEEE PHOTONICS TECHNOLOGY LETTERS, 17, p983(2005)
    [6]. Fujihara, A.; Mizuki, E.; Miyamoto, H.; Makino, Y.; Yamanoguchi, K.; Samoto, N.; Radio Frequency Integrated Circuits (RFIC) Symposium, 2000. Digest of Papers. 2000 IEEE 11-13 June 2000 p.213
    [7]. Kurakake, H.; Uchida, T.; Kubota, S.; Soda, H.; Yamazaki, S.; Quantum Electronics, 30, l 909 (1994).
    [8]. T. C. Wen, S. J. Chang, C. T. Lee, W. C. Lai, and J. K. Sheu, , IEEE TRANSACTIONS ON ELECTRON DEVICES, 51, 1743(2004)
    [9]. M. E. Lin, Z. Ma, F. Y. Huang, Z. F. Fan, L. H. Allen, and H. Morkos, “Low resistance ohmic contacts on wide band-gap GaN.” Appl. Phys. Lett., vol.64, p.1003, 1994.
    [10]. P. J. Hartlieb, A. Roskowski, R. F. Davis, and R. J. Nemanich. “Chemical, electrical, and structural properties of Ni/Au contacts on chemical vapor cleaned p-type GaN.” J. Appl. Phys, vol.91, p.9151, 2002.
    [11]. R.W. Chuang, A. Q. Zou, and H.P. Lee, Z.J. Dong, “Contact Resistance of InGaN/GaN Light Emitting Diodes Grown on the Production Model Multi-Wafer MOVPE Reactor.” MRS Internet Journal Nitride Semiconductor Research. 4S1, G6.42, 1999.
    [12]. T. Mori, T. Kozawa, T. Ohwaki, and Y. Taga, “Schottky barriers and contact resistances on p-type GaN.” Appl. Phys. Lett., vol.69, p.3537, 1996
    [13]. Chen-Fu Chu, C. C. Yu, Y. K. Wang, J. Y. Tsai, F. I. Lai, and S. C. Wang, “Low-resistance ohmic contacts on p-type GaN using Ni/Pd/Au metallization” Appl. Phys. Lett., vol.77, p.3423, 2000.
    [14]. W. Götz, M. Johnson, and D. P. Bour, “Deep level defects in Mg-doped,p-type GaN grown by metalorganic chemical vapor deposition,” Appl. Phys. Lett, vol.68, p.3470, 1996
    [15]. F. A. Reboredo and S. T. Pantelides, “Novel defect complex and their role in the p-type doping of GaN,” Phys. Rev. Lett, vol.82, p.1887, 1994.
    [16]. J. Neugebauer and C. G. Van de Walle, “Hydrogen in GaN: Novel aspects of a common impurity,” Phys. Rev. Lett., vol.75, p.4452, 1995.
    [17]. M. Miyachi, T. Tanaka, Y. Kimura, and H. Ota, “The activation of Mg in GaN byannealing with minority-carrier injection,” Appl. Phys. Lett, vol.72, p.1101, 1998 .
    [18]. B. A. Hull, S. E. Mohney, H. S. Venugoplan, and J. C. Ramer, “Influence of oxygen on the activation of p-type GaN,” Appl. Phys. Lett., vol.76, p.2271, 2000.
    [19]. S. H. Chung, M. Lachab, T. Wang, Y. Lacroix, D. Basak, Q. Fareed, Kawakami, K. Nishino, and S. Sakai, “Effect of oxygen on the activation of Mg acceptor in GaN epilayers grown by metalorganic chemical vapor deposition. ” Jpn. J. Appl. Phys., vol.39, p.4749, 2000.
    [20]. L. C. Chen, F. R. Chen, J. J. Kai, J. K. Ho, C. S. Jong, C. C. Chiu, C. N. Huang, and K. K. Shih, “Microstructural investigation of oxidized Ni/Au ohmic contact to p-type GaN,” J. Appl. Phys., vol.86, p.3826, 1999
    [21]. J. K. Sheu, J. M. Tsai, S. C. Shei, W. C. Lai, T. C. Wen, C. H. Kou, Y. K. Su, S. J. Chang, and G. C. Chi, “Low-operation voltage of InGaN/GaN light-emitting diodes with Si-doped In Ga N/GaN short-period superlattice tunneling contact layer,” IEEE Electron. Dev. Lett., vol.22, p.460, 2001.
    [22]. Y. Koide, T. Maeda, T. Kawakami, S. Fujita, T. Uemura, N. Shibata, and M. Murakami, “Effects of annealing in an oxygen ambient on electrical properties of ohmic contacts to p-type GaN,” J. Electron. Mater, vol.28, p.341, 1999.
    [23]. C. H. Chen, S. J. Chang, Y. K. Su, G. C. Chi, J. K. Sheu, and J. F. Chen, , QUANTUM ELECTRONICS, 8, 2848(2002)
    Chapter 4
    [1]. C. F. Shih, N. C. Chen, P. H. Chang and K. S. Liu, “Effect of Surface Electronic States of p-Type GaN on the Blue-Light-Emitting Diodes”, J. Electrochem. Soc., 152, G816 (2005)
    [2]. Jong Kyu Kim and Jong-Lam Lee, “GaN MSM Ultraviolet Photodetectors with Transparent and Thermally Stable RuO2 and IrO2 Schottky Contacts”, J. Electrochem. Soc. 151, G190 (2004)
    [3]. Min-Woo Ha, Seung-Chul Lee, Jin-Cherl Her, Kwang-Seok Seo and Min-Koo Han, Electrochem. Solid-State, 8, G352 (2005).
    [4]. Seikoh Yoshida and Joe Suzuki, “Characterization of a GaN Bipolar Junction Transistor after Operation at 300 for over 300 h”, Jpn. J. Appl. Phys. 38, L851 (1999)
    [5]. M. A. Khan, Q. Chen, J. W. Yang, M. S. Shur, B. T. Dermott, and J. A. Hinggins, “Microwave operation of GaN/AlGaN-doped channel heterostructure field effect transistors”, IEEE Electron Device Lett., 17, 325(1996).
    [6]. Y. F. Wu, B. P. Keller, P. Fini, S. Keller, T. J. Jenkins, L. T. Kehias, S. P. Denbaars, and U. K. Mishra, “High Al-content AlGaN/GaN MODFETs for ultrahigh performance”, IEEE Electron Device Lett., 19, 50(1998).
    [7]. C. H. Chen, S. Keller, G. Parish, R. Vetury, P. Kozodoy, E. L. Hu, S. P. Denbaars, and U. K. Mishra, “High-transconductance self-aligned AlGaN/GaN modulation-doped field-effect transistors with regrown ohmic contacts”, Appl. Phys. Lett., 73, 3147(1998).
    [8]. R. Li, S. J. Cai, L. Wong, Y. Chen, K. L. Wang, R. P. Smith, S. C. Martin, K. S. Boutros, and J. M. Redwing, “An Al0.3Ga0.7N/GaN undoped channel heterostructure field effect transistor with Fmax of 107 GHz”, IEEE Electron Device Lett., 20, 323(1999).
    [9]. W. Q. Chen and S. K.Hark, “Strain-induced effects in (111)-oriented InAsP/InP, InGaAs/InP, and InGaAs/InAlAs quantum wells on InP substrates”, J. Appl. Phys., 77, 5747(1995).
    [10]. A. D. Bykhovski, B. L. Gelmont, and M. S. shur, “Elastic strain relaxation and piezoeffect in GaN-AlN, GaN-AlGaN and GaN-InGaN superlattices”, J. Appl. Phys., 81, 6332(1997).
    [11]. J. M. Redwing, M. A. Tischler, J. S. Flynn, S. Elhamri, M. Ahoujja, R. S. Newrock, and W. C. Mitchel, “Two-dimensional electron gas properties of AlGaN/GaN heterostructures grown on 6H–SiC and sapphire substrates”, Appl. Phys. Lett., 69, 963(1996).
    [12]. Mahajan, A.; Arafa, M.; Fay, P.; Caneau, C.; Adesida, I., “Enhancement-mode high electron mobility transistors (E-HEMTs) lattice-matched to InP”, Electron Devices, IEEE Transactions on, 45, 2422(1998).
    [13]. Siddharth Rajan, Huili Xing, Steve DenBaars, and Umesh K. Mishra, “AlGaN/GaN polarization-doped field-effect transistor for microwave power applications”, Appl. Phys. Lett., 84, 1591(2004)
    Chapter 5
    [1]. Shuji Nakamura et al., ”InGaN/GaN/AlGaN-based laser diodes with cleaved facets grown on GaN substrates”, Appl. Phys. Lett. 73, 832 (1998)
    [2]. O. B. Shchekin, J. E. Epler, T. A. Trottier, T. Margalith, D. A. Steigerwald, M. O. Holcomb, P. S. Martin, and M. R. Krames, “High performance thin-film flip-chip InGaN–GaN light-emitting diodes”, Appl. Phys. Lett. 89, 071109 (2006)
    [3]. Serkan Butun, Mutlu Gökkavas, HongBo Yu, and Ekmel Ozbay, “Low dark current metal-semiconductor-metal photodiodes based on semi-insulating GaN” Appl. Phys. Lett. 89, 073503 (2006)
    [4]. B. P. Gila et al., “Improved oxide passivation of AlGaN/GaN high electron mobility transistors”, Appl. Phys. Lett. 87, 163503 (2005)
    [5]. G. Steinhoff, M. Hermann, W. J. Schaff, L. F. Eastman, M. Stutzmann, and M. Eickhoff, “pH response of GaN surfaces and its application for pH-sensitive field-effect transistors”, Appl. Phys. Lett. 83, 177 (2003)
    [6]. M. A. Khan, Q. Chen, J. W. Yang, M. S. Shur, B. T. Dermott, and J. A. Hinggins, “Microwave operation of GaN/AlGaN-doped channel heterostructure field effect transistors”, IEEE Electron Device Lett., 17, 325(1996).
    [7]. J. M. Barker, D. K. Ferry, D. D. Koleske, and R. J. Shul, “Bulk GaN and AlGaN/GaN heterostructure drift velocity measurements and comparison to theoretical models”, J. Appl. Phys. 97, 063705(2005)
    [8]. Anwar, A.F.M.; Shangli Wu; Webster, R.T., “Temperature dependent transport properties in GaN, AlxGa1-xN, and InxGa1-xN semiconductors”, Electron Devices, IEEE Transactions on, 48, 567(2001)
    [9]. S.M. Sze, Semiconductor devices (Physics and Technology), 2 edition, 95(2002).
    [10]. L. W. James, J. P. Van Dyke, F. Herman, and D. M. Chang, “Band Structure and High-Field Transport Properties of InP”, Physical Review B, 1, 3998(1970)
    [11]. Y.-F. Wu, D. Kapolnek, P. Kozodoy, B. Thibeault, S. Keller, B.P. Keller, S.P. Denbaars, U.K. Mishra, Compound Semiconductors, 1997 IEEE International Symposium on, 8-11, 431(1997)
    [12]. Haijiang Yu; McCarthy, L.; Rajan, S.; Keller, S.; Denbaars, S.; Speck, J.; Mishra, U., “Ion implanted AlGaN-GaN HEMTs with nonalloyed Ohmic contacts”, IEEE Electron Device Lett. 26, 283(2005)
    [13]. Tzong-Bin Wang, Wei-Chou Hsu, Jun-Long Su, Rong-Tay Hsu, Yu-Huei Wu, Yu-Shyan Lin, and Ke-Hua Su, “Comparison of Al0.32Ga0.68N/GaN Heterostructure Field-Effect Transistors with Different Channel Thicknesses”, J. Electrochem. Soc. 154, H131 (2007)
    [14]. Murata, T.; Hikita, M.; Hirose, Y.; Uemoto, Y.; Inoue, K.; Tanaka, T.; Ueda, D., “Source resistance reduction of AlGaN-GaN HFETs with novel superlattice cap layer” Electron Devices, IEEE Transactions on, 52, 1042(2005)
    [15]. S.J. Cai, R. Li, Y.L. Chen, L. Wong, W.G. Wu, S.G. Thomas, K.L. Wang, “High performance AlGaN/GaN HEMT with improved ohmic contacts”, Electronics Letters, 34, 2354(1998)
    [16]. Dong-Hyun Cho, Mitsuaki Shimizu, Toshihide Ide, Byoungrho Shim and Hajime Okumura, “Improvement of AlGaN/GaN Heterostructure Field Effect Transistor Characteristics by Using Two-Step Ohmic Contact Process”, Jpn. J. Appl. Phys. Vol. 42 2309 (2003)

    下載圖示 校內:2012-07-18公開
    校外:2012-07-18公開
    QR CODE