| 研究生: |
黃克穠 Huang, Ke-Nung |
|---|---|
| 論文名稱: |
採用超音波相位差法之震動及溫度量測系統 Vibration and Temperature Measurement Systems Based on Ultrasonic Phase-Shift Method |
| 指導教授: |
楊明興
Young, Ming-Shing |
| 學位類別: |
博士 Doctor |
| 系所名稱: |
電機資訊學院 - 電機工程學系 Department of Electrical Engineering |
| 論文出版年: | 2003 |
| 畢業學年度: | 91 |
| 語文別: | 英文 |
| 論文頁數: | 91 |
| 中文關鍵詞: | 超音波相位差 |
| 外文關鍵詞: | Ultrasonic Phase-Shift |
| 相關次數: | 點閱:51 下載:3 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
震動量測在工業應用上是非常重要的。本論文的主要目標是採用超音波相位差法來設計一量測震動和空氣中平均溫度的系統。此系統由一對40 kHz的超音波換能器來組成。在一個為發射、另一個為接收的操作模式下,來量測震動物體表面的動作。物體的相對動作,與發射端及接收端的連續超音波信號之間的相位差直接相關。利用新的重建方法,以擷取到的相位差角度變化可重建出物體的震動動作。由實驗得知,在發射與接收不同端的情況下此震動量測系統的準確度是 0.07 mm,在相同端的情況下是 0.98 mm。
本研究的另一項應用設計是藉著量測空氣中的音速變化,來換算出空氣中平均溫度的變化。我們利用FPGA設計出一數位相位差偵測模組,將發射端與接收端的連續超音波信號之間的相位差記錄下來,再由89C51單晶微控制器來分析及計算出空氣中的平均溫度值。當發射端與接收端的相對距離為 10 cm 時,理論上本系統的準確性為 0.05 ℃,溫度變化的反應時間為10 ms。此一採用超音波相位差法之新型震動及溫度量測系統的主要優點是高解析度、反應時間短可快速量測、採非接觸式並且在硬及軟體上易於實現。
Vibration measurements are very important in many industrial applications. The main aim of this dissertation is to design a measurement system based on an ultrasonic phase-shift method to measure vibration and average temperature in air. The instrument developed consists of a pair of 40 kHz ultrasonic transducers which are used as transmitter and receiver respectively to get the motion of a vibration object. The relative motion of the object modulates the phase angle between transmitted and received ultrasound signals. We developed an ingenious method to reconstruct the relative motion of an object from the acquired data of the phase angle changes. The measurement accuracy of the system in the reported experiments is within 0.07 mm in face to face direct mode, and 0.98 mm in round trip mode.
This study also presents a microcontroller-based ultrasonic system which can measure air temperature based on the variations of sound speed in the air. Changes of the sound speed are in turn determined by detecting the phase-shift variations of a 40 kHz continuous ultrasonic wave. In a test embodiment, two 40 kHz ultrasonic transducers are set face to face at a constant distance. Phase angle differences between transmitted and received signals are determined by a FPGA digital phase detector and then analyzed in an 89C51 single-chip microcontroller. Temperature is calculated and then sent to an LCD display and, optionally, to a PC. Theoretical accuracy of measurement is within 0.05 ℃ at an inter-transducer distance of 10 cm. Temperature variations are displayed within 10 ms. The main advantages of the vibration and temperature measurement system are high resolution, rapid temperature measurement, noncontact measurement and easy implementation.
1. D. Marioli, C. Narduzzi, C. Offelli, D. Petri, E. Sardini, and A. Taroni, “Digital time-of-flight measurement for ultrasonic sensors.” IEEE Trans. Instrum. Meas., vol. 41, pp.93-97, Feb. 1992.
2. C. Cai and Paul P. L. Regtien, “Accurate digital time-of-flight measurement using self-interference.” IEEE Trans. Instrum. Meas., vol. 42, pp.990-994, Dec. 1993.
3. G. Bucci, et al., “Numerical method for transit time measurement in ultrasonic sensor applications.” IEEE Trans. Instrum. Meas., vol. 46, pp.1241-1246, Dec. 1997.
4. F. E. Gueuning, et al., “Accurate distance measurement by an autonomous ultrasonic system combining time-of-flight and phase-shift methods.” IEEE Trans. Instrum. Meas., vol. 46, pp.1236-1240, Dec. 1997.
5. M. Parrilla, J. J. Anaya, and C. Fritsch, “Digital signal processing techniques for high accuracy ultrasonic range measurements.” IEEE Trans. Instrum. Meas., vol. 40, pp. 759-763, Aug. 1991.
6. D. Webster, “A pulsed ultrasonic distance measurement system based upon phase digitizing.” IEEE Trans. Instrum. Meas., vol. 43, pp. 578-582, Aug. 1994.
7. F. Figueroa and E. Barbieri, “An Ultrasonic Ranging System for Structral Vibration Measurements.” IEEE Trans. Instrum. Meas., vol. 40, pp.764-769, 1991.
8. F. Figueroa et al., “Increased measurement range via frequency division in ultrasonic phase detection methods.” Acustica., vol. 73, pp.47-49, 1991.
9. M. S. Young and Y. C. Li, “A high precision ultrasonic system for vibration measurements.” Rev. Sci. Instrum., 63(11), pp.5435-5441, 1992.
10. O. B. Matar, et al., “Noncontact measurement of vibration using airborne ultrasound.” IEEE trans. On ultrasonics, ferroelectrics, and frequency control, vol. 45, pp.626~633, 1998.
11. M. Yang, S. L. Hill, B. Bury, and J. O. Gray, “A multifrequency AM-based ultrasonic system for accuracy distance measurement.” IEEE Trans. Instrum. Meas., vol. 43, pp.861-866, Dec. 1994.
12. A. K. T. Lee, J. Lucas, and L. E. Virr, “Microcomputer-controlled acoustic rangefinding technique.” J. Phys. E: Sci. Instrum., vol. 22, pp.52-58, 1989.
13. C. F. Huang, M. S. Young and Y. C. Li, “Multiple-frequency continuous wave ultrasonic system for accurate distance measurement.” Rev. Sci. Instrum. 70(2), pp. 1452-1458, Feb. 1999.
14. G. Mauris, E. Benoit, and L. Foulloy, “Local measurement validation for an intelligent chirped-FM ultrasonic range sensor.” IEEE Trans. Instrum. Meas., vol. 49, pp.835-839, Aug. 2000.
15. C.W.Young, M.S.Young and Y.C.Li, “An Advanced Ultrasonic System for Vibration Measurement.” Advances in Instrumentation and Control International Conference, vol. 51, Part2, pp.811-816, 1996.
16. J. W. Dally, W. F. Riley, and K. G. McConnell, “Instrumentation for engineering measurements.” 2nd ed. Wiley, New York, 1993. p.413
17. George S. K. Wong; “ Speed of sound in standard air.” J. Acoust. Soc. Am. 79 (5), pp. 1359-1366, May 1986.
18. P. Rothwell, “Sound propagation in the lower atmosphere.” J. Acoust. Soc. Am., 19, pp. 205-221, July 1956.
19. D. K. Wilson and D. W. Thomson, “Acoustic propagation through anisotropic, surface-layer turbulence.” J. Acoust. Soc. Am., 96, pp.1080-1095, Aug. 1994.
20. R. H. Mellen and G. Siling, “Sound propagation through atmospheric turbulence: multifractal phase fluctuations.” J. Acoust. Soc. Am., 97, pp.141-146, Jan. 1995.
21. G. A. Daigle, T. F. W. Embleton, and J. E. Piercy, “Propagation of sound in the presence of gradients and turbulence near the ground.” J. Acoust. Soc. Am., 79(3), pp.613-627, Mar. 1986.
22. M. Bramanti et al., “An acoustic pyrometer system for tomographic thermal imaging in power plant boilers.” IEEE Trans. Instrum. Meas., vol. 45, pp.159-167, Feb. 1996.
23. K. D. Wilson and W. T. Dennis, “Acoustic propagation through anisotropic, surface-layer turbulence.” J. Acoust. Soc. Am. 96, pp. 1080-1095, 1994.
24. C. Canali et at., “ A temperature compensated ultrasonic sensor operating in air for distance and proximity measurements.” IEEE Trans. Ind. Electron., vol. IE-29, pp.336-341, Nov. 1982.
25. D. Marioli, E. Sardini, and A. Taroni, “Ultrasonic distance measurement for linear and angular position control.” IEEE Trans. Instrum. Meas., vol. 37, pp.578-581, Dec. 1988.
26. J. M. Martin et at., “Ultrasonic ranging gets thermal correction.” Sensor Review, vol. 9, pp.153-155, Jul. 1989.
27. J. M. Martin et at., “Ultrasonic ranging.” Sensor Review, vol. 12, pp.17-21, 1992.
28. S. K. Jeng and C. H. Liu, “Wave propagation in media with three-dimensional quadratic refractive index profile.” J. Acoust. Soc. Am. 81(6), pp. 1732-1739, June 1987.