簡易檢索 / 詳目顯示

研究生: 陳泊淳
Chen, Po-Chun
論文名稱: 簡易、大面積P型二硫化鉬薄膜之開發應用於同質結構自供電光電探測器
Development of Simple and Large-Area P-Type MoS2 Films for Homojunction Self-Powered Photodetectors
指導教授: 朱聖緣
Chu, Sheng-Yuan
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 電機工程學系
Department of Electrical Engineering
論文出版年: 2025
畢業學年度: 113
語文別: 中文
論文頁數: 99
中文關鍵詞: 二維材料自供電高遷移率光電感測器P-type
外文關鍵詞: Two-dimensional materials, self-powered, high mobility, photodetector, P-type
相關次數: 點閱:16下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 因應人工智慧、機器學習和物聯網(IoT)等科技的成熟和科技的日新月異,需要巨量資料運算的技術變得越來越普遍,對於低功耗和儲能元件的需求變得越來越高。多數的自供電光感測器以PN接面或PIN接面為主,製作上來說需要沉積較厚的P型層薄膜和N型層薄膜。若以和目前的半導體技術整合為前景,則該結構不利於今後元件的微縮化。因此,二維材料引起了學界與業界的高度關注。因為本身結構易於微縮化而能製作出極薄的奈米級元件,與目前尺度逐漸限縮的CMOS科技在製程上有較好的相容性,且由於P型二硫化鉬的薄膜需要相對較複雜的製程。本研究目標是以一步熱裂解方式嘗試調變不同的摻雜濃度製程參數以得到具有高遷移率的P型二硫化鉬薄膜,再透過鍍上電極的方式將PN同質接面的二硫化鉬作為自供電光感測器探討其效能。

    With the rapid advancement of technologies such as artificial intelligence (AI), machine learning, and the Internet of Things (IoT), the demand for massive data processing has grown significantly. Consequently, the development of low-power consumption and energy storage devices has become increasingly critical. Most self-powered photodetectors rely on PN or PIN junctions, which typically require the deposition of relatively thick p-type and n-type semiconductor layers. However, such structures are not favorable for future device miniaturization, particularly when considering integration with current semiconductor technologies.
    Two-dimensional (2D) materials have attracted substantial attention from both academia and industry due to their inherent advantages for scaling down, enabling the fabrication of ultra-thin, nanoscale devices. These materials offer better compatibility with existing CMOS fabrication processes, which are trending toward smaller feature sizes. Among them, p-type molybdenum disulfide (MoS2) remains challenging to fabricate due to the complexity of conventional doping techniques.
    In this study, we propose a one-step thermal decomposition method to achieve p-type doping in MoS₂ thin films by modulating doping concentration through process parameter control. The goal is to obtain high-mobility p-type MoS2 films. A homojunction MoS2-based self-powered photodetector is then fabricated by depositing electrodes on the doped and intrinsic MoS2 layers, and its optoelectronic performance is systematically investigated.

    摘要i Extended Abstractii 誌謝xiii 目錄xiv 第一章、緒論1 1.1前言1 1.2動機2 1.3論文架構4 第二章、理論介紹與文獻回顧5 2.1 MoS2的合成方法及文獻綜述5 2.1.1 機械剝落5 2.1.2 液相剝落6 2.1.3 水熱合成7 2.1.4 化學氣相沉積8 2.1.4 熱分解合成9 2.2 P型MoS2的摻雜方法及文獻綜述11 2.2.1 離子佈植(Ion Implantation)11 2.2.2 等離子體摻雜(Plasma Doping)12 2.2.3 化學摻雜(Chemical Doping)13 2.3 MoS₂光感測器製備與文獻回顧15 2.3.1 MoS2 光導體(Photoconductor)文獻回顧16 2.3.2 MoS2 光二極體(Photodiode)文獻回顧17 2.3.4 MoS2 光電晶體(Phototransistor)文獻回顧18 2.3.5 N型MoS2 光感測器文獻回顧19 2.3.6 P型MoS2 光感測器文獻回顧20 2.3.6 PN型異質接面MoS2 光感測器文獻回顧21 2.3.7 PN型同質接面MoS2 光感測器文獻回顧22 2.4 光電感測器特性介紹23 2.4.1 響應時間(上升&下降時間)23 2.4.2 開/關比(On/Off Ratio)23 2.4.3 光響應度(Responsivity)24 2.4.4 探測度(Detectivity)25 2.4.5 功率定律(Power Law)25 2.4.6 載子遷移率(Carrier Mobility)26 第三章、實驗步驟與儀器原理27 3.1 製程設備27 3.1.1 旋轉塗佈機27 3.1.2 管式爐28 3.1.3 蒸鍍系統28 3.2 材料分析設備29 3.2.1 拉曼光譜儀(Raman Spectra)29 3.2.2 X光光電子能譜儀(X-Ray Photoelectron Spectrometer, XPS)30 3.2.3 螢光分光光譜儀(photoluminescence, PL)31 3.2.4 穿透式電子顯微鏡(Transmission Electron Microscopy)32 3.2.5 霍爾量測(Hall measurement)33 3.3 電性分析設備34 3.4 MoS₂ 薄膜與光電感測器的製備流程35 3.4.1 基板清潔製程35 3.4.2 前驅物薄膜沉積36 3.4.3 利用熱分解法進行 P型MoS2 薄膜沉積37 3.4.4 利用熱分解法進行 PN 同質接面MoS₂ 薄膜沉積39 3.4.5 電極製備40 第四章、結果與討論42 4.1 薄膜材料分析42 4.1.1 MoS2和不同濃度的PMoS2之光學顯微鏡(OM)影像與實際圖42 4.1.2 MoS2和不同濃度的PMoS2之拉曼光譜分析(Raman)43 4.1.3 MoS2和不同濃度的PMoS2之螢光分光光譜儀分析(PL)46 4.1.4 MoS2、PMoS2與PNMoS2薄膜TEM圖47 4.1.5 MoS2和不同濃度的PMoS2之X光光電子能譜分析(XPS)48 4.1.6 MoS2和不同濃度的PMoS2之霍爾檢測(Hall effect)51 4.2 薄膜導電特性分析55 4.2.1 PMoS2及PNMoS2同質接面光電感測器之I-V曲線圖55 4.2.2 PMoS2及PNMoS2同質接面光電感測器之電流-時間(I-t)曲線57 4.2.3 PMoS2及PNMoS2同質接面自供電光電感測器之電流-時間(I-t)曲線59 4.2.4 PMoS2及PNMoS2同質接面光電感測器之上升/下降時間61 4.2.5 響應度及探測度(Responsivity & Detectivity)62 4.2.6 功率定律(Power Law)63 4.2.7 自供電光電感測器的論文比較65 4.2.8 光電感測器能帶及機制介紹67 第五章、結論69 第六章、未來展望71 第七章、參考文獻72

    [1]. X. Li and H. Zhu, "Two-dimensional MoS2: Properties, preparation, and applications," Journal of Materiomics, vol. 1, no. 1, pp. 33-44, 2015, doi: 10.1016/j.jmat.2015.03.003.
    [2]. M. Dai et al., "A Dual-Band Multilayer InSe Self-Powered Photodetector with High Performance Induced by Surface Plasmon Resonance and Asymmetric Schottky Junction," ACS Nano, vol. 12, no. 8, pp. 8739-8747, 2018/08/28 2018, doi: 10.1021/acsnano.8b04931.
    [3]. Prucnal, S.; Hashemi, A.; Ghorbani-Asl, M.; Hübner, R.; Duan, J.; Wei, Y.; Sharma, D.; Zahn, D. R.; Ziegenrücker, R.; Kentsch, U. Chlorine doping of MoSe 2 flakes by ion implantation. Nanoscale 13 (11), 5834-5846, 2021.
    [4]. Ahmed, S.; Cui, X.; Murmu, P. P.; Ding, X.; Chu, X.; Sathish, C.; Bao, N.; Liu, R.; Zhao, W.; Kennedy, J. Doping and defect engineering induced extremely high magnetization and large coercivity in Co doped MoTe2. Journal of Alloys and Compounds 918, 165750,2022.
    [5]. Wang, S.; Zeng, X.; Zhou, Y.; Lu, J.; Hu, Y.; Wang, W.; Wang, J.; Xiao, Y.; Wang, X.; Chen, D. High-performance MoS2 complementary inverter prepared by oxygen plasma doping. ACS Applied Electronic Materials, 4 (3), 955-963, 2022.
    [6]. Shan, Y.; Yin, Z.; Zhu, J.; Li, X.; Dou, W.; Wang, Y.; Liu, C.; Deng, H.; Dai, N. Few‐layered MoS2 based vertical Van Der Waals p‐n homojunction by highly‐efficient N2 plasma implantation. Advanced Electronic Materials, 8 (10), 2200299, 2022.
    [7]. Jeon, D.-Y.; Park, J.; Park, S. J.; Kim, G.-T. Junctionless Electric-Double-Layer MoS2 Field-Effect Transistor with a Sub-5 nm Thick Electrostatically Highly Doped Channel. ACS Applied Materials & Interfaces, 15 (6), 8298-8304, 2023.
    [8]. Liu, Y.; Shen, T.; Linghu, S.; Zhu, R.; Gu, F. Electrostatic control of photoluminescence from A and B excitons in monolayer molybdenum disulfide. Nanoscale Advances, 4 (11), 2484-2493, 2022
    [9]. Van Efferen, C.; Murray, C.; Fischer, J.; Busse, C.; Komsa, H.-P.; Michely, T.; Jolie, W. Metal-insulator transition in monolayer MoS2 via contactless chemical doping. 2D Materials, 9 (2), 025026, 2022.
    [10]. Iqbal, M. W.; Razzaq, S.; Noor, N.; Aftab, S.; Afzal, A.; Ullah, H.; Suleman, M.; Elahi, E. Enhancing the electronic properties of the graphene-based field-effect transistor via chemical doping of KBr. Journal of Materials Science: Materials in Electronics, 33 (15), 12416-12425, 2022.
    [11]. Sahoo, K. R.; Guha, A.; Bawari, S.; Sharma, R.; Maity, D.; Narayanan, T. N. Basal plane activation of MoS2 by the substitutional doping of vanadium toward electrocatalytic hydrogen generation. ACS Applied Energy Materials, 5 (9), 11263-11270, 2022.
    [12]. Li, M.; Yao, J.; Wu, X.; Zhang, S.; Xing, B.; Niu, X.; Yan, X.; Yu, Y.; Liu, Y.; Wang, Y. P-type doping in large-area monolayer MoS2 by chemical vapor deposition. ACS applied materials & interfaces, 12 (5), 6276-6282, 2020.
    [13]. Qin, Z.; Loh, L.; Wang, J.; Xu, X.; Zhang, Q.; Haas, B.; Alvarez, C.; Okuno, H.; Yong, J. Z.; Schultz, T. Growth of Nb-doped monolayer WS2 by liquid-phase precursor mixing. ACS nano 2019, 13 (9), 10768-10775.
    [14]. Li, M.; Wu, X.; Guo, W.; Liu, Y.; Xiao, C.; Ou, T.; Zheng, Y.; Wang, Y. Controllable p-type doping of monolayer MoS 2 with tantalum by one-step chemical vapor deposition. Journal of Materials Chemistry C, 10 (19), 7662-7673, 2022.
    [15]. Pak, S. Controlled p-Type Doping of MoS2 Monolayer by Copper Chloride. In Nanomaterials,; Vol. 12, 2022
    [16]. K. S. Novoselov et al., "Electric Field Effect in Atomically Thin Carbon Films," Science, vol. 306, no. 5696, pp. 666-669, 2004/10/22 2004, doi: 10.1126/science.1102896.
    [17]. Z. Yin et al., "Single-Layer MoS2 Phototransistors," ACS Nano, vol. 6, no. 1, pp. 74-80, 2012/01/24 2012, doi: 10.1021/nn2024557.
    [18]. H. Li et al., "Optical Identification of Single- and Few-Layer MoS2 Sheets," Small, vol. 8, no. 5, pp. 682-686, 2012, doi: 10.1002/smll.201101958.
    [19]. H. Li et al., "Fabrication of single- and multilayer MoS2 film-based field-effect transistors for sensing NO at room temperature," Small, vol. 8, no. 1, pp. 63-7, Jan 9 2012, doi: 10.1002/smll.201101016.
    [20]. A. O’Neill, U. Khan, and J. N. Coleman, "Preparation of High Concentration Dispersions of Exfoliated MoS2 with Increased Flake Size," Chemistry of Materials, vol. 24, no. 12, pp. 2414-2421, 2012/06/26
    [21]. X. Fan et al., "Fast and Efficient Preparation of Exfoliated 2H MoS2 Nanosheets by Sonication-Assisted Lithium Intercalation and Infrared Laser-Induced 1T to 2H Phase Reversion," Nano Lett, vol. 15, no. 9, pp. 5956-60, Sep 9 2015, doi: 10.1021/acs.nanolett.5b02091.
    [22]. H. Miao et al., "Hydrothermal synthesis of MoS2 nanosheets films: Microstructure and formation mechanism research," Materials Letters, vol. 166, pp. 121-124, 2016/03/01/ 2016, doi: 10.1016/j.matlet.2015.12.010.
    [23]. X. Lu et al., "One-Step Hydrothermal Fabrication of Three-dimensional MoS2 Nanoflower using Polypyrrole as Template for Efficient Hydrogen Evolution Reaction," Scientific Reports, vol. 7, no. 1, p. 42309, 2017/02/14 2017, doi: 10.1038/srep42309.
    [24]. N. Chaudhary, M. Khanuja, Abid, and S. S. Islam, "Hydrothermal synthesis of MoS2 nanosheets for multiple wavelength optical sensing applications," Sensors and Actuators A: Physical, vol. 277, pp. 190-198, 2018, doi: 10.1016/j.sna.2018.05.008.
    [25]. A. Singh, M. Moun, M. Sharma, A. Barman, A. Kumar Kapoor, and R. Singh, "NaCl-assisted substrate dependent 2D planar nucleated growth of MoS2," Applied Surface Science, vol. 538, 2021, doi: 10.1016/j.apsusc.2020.148201.
    [26]. K.-K. Liu et al., "Growth of Large-Area and Highly Crystalline MoS2 Thin Layers on Insulating Substrates," Nano Letters, vol. 12, no. 3, pp. 1538-1544, 2012/03/14 2012, doi: 10.1021/nl2043612.
    [27]. J. Yang et al., "Wafer-scale synthesis of thickness-controllable MoS<sub>2</sub>films via solution-processing using a dimethylformamide/n-butylamine/2-aminoethanol solvent system," (in 2), Nanoscale, vol. 7, no. 20, pp. 9311-9319, 2015, doi: 10.1039/c5nr01486g.
    [28]. Wu, T.-Y.; Wang, L.-W.; Chen, B.-C.; Wang, J.-H.; Chu, S.-Y. Investigations of MoS2-Based Self-Powered M–S–M Photodetectors with Low Defect Density and Fast Response and Low-Temperature Characteristics. ACS Applied Electronic Materials, 6 (2), 702-711, 2024.
    [29]. Xu, K.; Zhao, Y.; Lin, Z.; Long, Y.; Wang, Y.; Chan, M.; Chai, Y. Doping of two-dimensional MoS2 by high energy ion implantation. Semiconductor Science and Technology, 32 (12), 124002. DOI: 10.1088/1361-6641/aa8ed3, 2017.
    [30]. Wang, S.; Zeng, X.; Zhou, Y.; Lu, J.; Hu, Y.; Wang, W.; Wang, J.; Xiao, Y.; Wang, X.; Chen, D.; et al. High-Performance MoS2 Complementary Inverter Prepared by Oxygen Plasma Doping. ACS Applied Electronic Materials, 4 (3), 955-963. DOI: 10.1021/acsaelm.1c01070, 2022.
    [31]. Shijiao, H.; Yishuo, H.; Zhuocheng, G.; Yufei, Y.; Leqi, Q.; Yu, P.; Huaicheng, D.; Zhiqi, W.; Wenhao, Z.; Bo, W. In situ growth of Cu-doped MoS 2 thin films via a laser-induced technique: efficient P-type doping and effective enhancement of the FET device performance. Journal of Materials Chemistry C, 13 (18), 9347-9357,2025.
    [32]. Zhang, X.-M.; Tseng, S.-H.; Lu, M.-Y. Large-Area Ultraviolet Photodetectors Based on p-Type Multilayer MoS2 Enabled by Plasma Doping. In Applied Sciences,; Vol. 9, 2019.
    [33]. Dhyani, V.; Das, S. High-Speed Scalable Silicon-MoS2 P-N Heterojunction Photodetectors. Scientific Reports, 7 (1), 44243. DOI: 10.1038/srep44243, 2017.
    [34]. Huo, N.; Konstantatos, G. Ultrasensitive all-2D MoS2 phototransistors enabled by an out-of-plane MoS2 PN homojunction. Nature Communications, 8 (1), 572, 2017,DOI: 10.1038/s41467-017-00722-1.
    [35]. W. Jin et al., "Self-powered high performance photodetectors based on CdSe nanobelt/graphene Schottky junctions," Journal of Materials Chemistry, vol. 22, no. 7, doi: 10.1039/c2jm15913a, 2012.
    [36]. G. Cao, C. Wang, Y. Luo, and X. Li, "All-in-one photoelectric logic gates by Dember photodetectors," Photon. Res., vol. 11, no. 7, 2023, doi: 10.1364/prj.487509.
    [37]. Y. Kim, J. Kim, H. M. Kim, and J. Jang, "Quantum‐Dots Photosensor with Wide Bandgap P‐Type and N‐Type Oxide Semiconductors for High Detectivity and Responsivity," Advanced Materials Technologies, vol. 5, no. 1, 2019, doi: 10.1002/admt.201900857.
    [38]. J. M. Choi et al., "Ultra-flexible and rollable 2D-MoS(2)/Si heterojunction-based near-infrared photodetector via direct synthesis," Nanoscale, vol. 13, no. 2, pp. 672-680, Jan 21 2021, doi: 10.1039/d0nr07091b.
    [39]. D. Lembke and A. Kis, "Breakdown of High-Performance Monolayer MoS2 Transistors," ACS Nano, vol. 6, no. 11, pp. 10070-10075, 2012/11/27 2012, doi: 10.1021/nn303772b.
    [40]. T. Zhao, Q. D. Gibson, L. M. Daniels, B. Slater, and F. Corà, "Prediction of higher thermoelectric performance in BiCuSeO by weakening electron–polar optical phonon scattering," Journal of Materials Chemistry A, vol. 8, no. 47, pp. 25245-25254, 2020, doi: 10.1039/d0ta08839k.
    [41]. Dong, G.; Ai, Z.; Zhang, L. Total aerobic destruction of azo contaminants with nanoscale zero-valent copper at neutral pH: promotion effect of in-situ generated carbon center radicals. Water Research, 66, 22-30, 2014.
    [42]. Zhang, X.-M.; Tseng, S.-H.; Lu, M.-Y. Large-Area Ultraviolet Photodetectors Based on p-Type Multilayer MoS2 Enabled by Plasma Doping. Applied Sciences, 9 (6), 1110, 2019.
    [43]. Laskar, M. R.; Nath, D. N.; Ma, L.; Lee, E. W., II; Lee, C. H.; Kent, T.; Yang, Z.; Mishra, R.; Roldan, M. A.; Idrobo, J.-C.; et al. p-type doping of MoS2 thin films using Nb. Applied Physics Letters, 104 (9), 2014, 092104. DOI: 10.1063/1.4867197
    [44]. Lee, J. S.; Park, C.-S.; Kim, T. Y.; Kim, Y. S.; Kim, E. K. Characteristics of p-Type Conduction in P-Doped MoS2 by Phosphorous Pentoxide during Chemical Vapor Deposition. Nanomaterials, 9 (9), 1278, 2019.
    [45]. Liu, X.; Qu, D.; Ryu, J.; Ahmed, F.; Yang, Z.; Lee, D.; Yoo, W. J. P-Type Polar Transition of Chemically Doped Multilayer MoS2 Transistor. Advanced Materials, 28 (12), 2345-2351, 2016. DOI: https://doi.org/10.1002/adma.201505154
    [46]. Oh, G. H.; Kim, S.-i.; Kim, T. High-performance Te-doped p-type MoS2 transistor with high-K insulators. Journal of Alloys and Compounds, 860, 157901, 2021.
    [47]. Wu, W.; Zhang, Q.; Zhou, X.; Li, L.; Su, J.; Wang, F.; Zhai, T. Self-powered photovoltaic photodetector established on lateral monolayer MoS2-WS2 heterostructures. Nano Energy, 51, 45-53, 2018.
    [48]. Xin, Y.; Wang, X.; Chen, Z.; Weller, D.; Wang, Y.; Shi, L.; Ma, X.; Ding, C.; Li, W.; Guo, S.; Liu, R. Polarization-Sensitive Self-Powered Type-II GeSe/MoS2 van der Waals Heterojunction Photodetector. ACS Applied Materials & Interfaces, 12 (13), 15406-15413, 2020.
    [49]. Kang, Z.; Cheng, Y.; Zheng, Z.; Cheng, F.; Chen, Z.; Li, L.; Tan, X.; Xiong, L.; Zhai, T.; Gao, Y. MoS2-Based Photodetectors Powered by Asymmetric Contact Structure with Large Work Function Difference. Nano-Micro Letters, 11 (1), 34, 2019.
    [50]. Liu, X.; Li, F.; Xu, M.; Shen, T.; Yang, Z.; Fan, W.; Qi, J. High Response, Self-Powered Photodetector Based on the Monolayer MoS2/P–Si Heterojunction with Asymmetric Electrodes. Langmuir, 34 (47), 14151-14157, 2018.
    [51]. Liu, X.; Zhu, J.; Shan, Y.; Liu, C.; Pan, C.; Zhang, T.; Liu, C.; Chen, T.; Ling, J.; Duan, J. An Ultrasensitive and Broad‐Spectrum MoS2 Photodetector with Extrinsic Response Using Surrounding Homojunction. Advanced Science, 11 (45), 2408299, 2024.
    [52]. Wang, C.; Wu, Q.; Ding, Y.; Cai, Z.; Xiao, S.; Zhang, X.; Nan, H.; Gu, X. The high-performance photodetector of MoS2 homojunction based on laser etching engineering. Applied Physics Express, 16 (1), 015003, 2022.
    [53]. Liu, B.; Li, M.; Fu, W.; Ye, P.; Xiao, X.; Wei, H.; Lu, Y.; He, Y. High-performance self-driven ultraviolet photodetector based on SnO2 pn homojunction. Optical Materials, 129, 112571, 2022.
    [54]. Jian, L.; Zhang, S.; Gao, W.; Sang, Y.; Sun, Y.; Huo, N.; Zheng, Z.; Yang, M. WS2 lateral p–n homojunction toward a sensitive self-driven photodetector by water treatment. Applied Physics Letters, 124 (9), 2024.
    [55]. Tan, C.; Wang, H.; Zhu, X.; Gao, W.; Li, H.; Chen, J.; Li, G.; Chen, L.; Xu, J.; Hu, X. A self-powered photovoltaic photodetector based on a lateral WSe2-WSe2 homojunction. ACS Applied Materials & Interfaces, 12 (40), 44934-44942, 2020.

    下載圖示 校內:2025-07-15公開
    校外:2025-07-15公開
    QR CODE