簡易檢索 / 詳目顯示

研究生: 錢皓
Qian, Hao
論文名稱: 具有零電壓零電流切換之交錯並聯高升壓轉換器
High step-up interleaved DC-DC converter with ZVZCS
指導教授: 陳建富
Chen, Jiann-Fuh
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 電機工程學系
Department of Electrical Engineering
論文出版年: 2016
畢業學年度: 104
語文別: 英文
論文頁數: 57
中文關鍵詞: 高升壓比交錯並聯耦合電感軟開關
外文關鍵詞: high step-up, interleaved, coupled-inductor, soft-switching
相關次數: 點閱:93下載:12
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 基於現有的耦合電感和切換電容拓撲上,本論文提出一種具有零電壓零電流切換的新穎高升壓轉換器。根據眾多再生能源的特性,此類轉換器通常需要較高的升壓比、效率和較大的容量。故交錯並聯和主動箝位技術被引進在本文所提出的轉換器中。
    穩態工作時,轉換器耦合電感器的漏感會與兩顆切換電容器諧振。在不同的諧振頻率下,零電壓導通和零電流截止會分別在部分功率開關和整流二極體上實現。故開關損耗和反向恢復問題會有所減輕,進而提高了轉換器的效率。由於引進了交錯並聯機制和更多的開關數量,每一顆耦合電感器的匝數比可以大大减少,且一次側的電流應力也有所降低,故轉換器整體容量可以顯著提高。
    在實驗之前,包含升壓比在內的電路穩態特性在本文中均進行了詳細的推導,並和現有的電路進行了比較。另外,區分軟切換模式的邊界圖也在文中繪出並通過軟體模擬進行了驗證。最後,基於控制器TMDSDOCK28035,具有24 V輸入電壓、400 V輸出電壓、800 W輸出功率的電路原型也製作出用以驗證所提轉換器之可行性。

    In this thesis, a novel high step-up DC-DC converter with ZVZCS is proposed based on several existing coupled-inductor and switching-capacitor topologies. According to the characteristics of renewable energy sources, these kinds of converters are usually required to have a high conversion ratio, high efficiency and large power capacity. Therefore, the interleaving and active-clamp techniques are introduced.
    During steady-state operating modes of the proposed converter, the leakage inductor of the coupled inductors resonates with two switching capacitors. Under different resonant frequencies, ZVS turn-on and ZCS turn-off can be realized for certain power switches and rectifying diodes, respectively. Therefore, the switching loss and reverse recovery problems are alleviated, which improves the efficiency of the converter. Thanks to the interleaving mechanism and more switches, the turn ratio of each coupled inductor can be reduced dramatically, along with less current stress in the primary-side winding. Therefore, the power capacity can be improved significantly.
    Before experiment, steady-state performance including the voltage conversion ratio is derived and compared with existing ones. In addition, the mode boundary map for distinguishing soft-switching modes is depicted and verified by the software simulation. Finally, a prototype with 24 V input voltage, 400 V output voltage and 800 W output power using controller TMDSDOCK28035 is implemented in the laboratory to verify the feasibility of the proposed converter.

    CHINESE ABSTRACT I ABSTRACT II ACKNOWLEDGEMENT III CONTENTS IV LIST OF FIGURES VI LIST OF TABLES VIII NOMENCLATURE IX CHAPTER 1 INTRODUCTION 1 1.1 Background 1 1.2 Review of Techniques 3 1.2.1 High step-up converters 3 1.2.2 Active clamp 8 1.2.3 Interleaving technique 9 1.3 Thesis outline 10 CHAPTER 2 NOVEL HIGH STEP-UP DC-DC CONVERTER 11 2.1 The Proposed Converter 11 2.2 Operating Principle 12 2.3 Steady-State Analysis 19 2.3.1 Equivalent circuit 19 2.3.2 Key parameters deduction 22 2.4 Summary 25 CHAPTER 3 BOUNDARY MAP FOR ZERO-VOLTAGE-SWITCHING AND ZERO-CURRENT-SWITCHING 26 3.1 Three Operating Modes 26 3.2 Mode Map 30 3.3 Design and Simulation 37 3.3.1 Design Steps 37 3.3.2 Simulations 37 3.4 Summary 41 CHAPTER 4 IMPLEMENTATION AND EXPERIMENT 42 4.1 Specifications 42 4.1.1 Magnetizing inductance 42 4.1.2 Coupled inductors 43 4.1.3 Switches and diodes 44 4.1.4 Output capacitor and clamping capacitor 45 4.2 Layout appearance 47 4.3 Waveforms 48 4.4 Efficiency Comparison 52 CHAPTER 5 CONCLUSION AND FUTURE WORKS 54 REFERENCE 56

    [1] A. Voiland. (2009, Oct 22). New Map Offers a Global View of Health-Sapping Air Pollution [Online]. Available: http://www.nasa.gov/
    [2] V. Weinmann. (2014, June 6). Transport said to be responsible for one-third of PM2.5 pollution in Beijing [Online]. Available: http:// sustainabletransport.org/
    [3] Y. Zhao, X. Xiang, C. Li, Y. Gu, W. Li and X. He, “Single-phase high step-up converter with improved multiplier cell suitable for half-bridge-based PV inverter system,” IEEE Trans. Power Electron., vol. 29, no. 6, pp. 2807-2816, Jun. 2014.
    [4] T. J. Liang, S. M. Chen, L. S. Yang, J. F. Chen and A. Ioinovici, “Ultra-large gain step-up switched-capacitor DC-DC converter with coupled inductor for alternative sources of energy,” IEEE Trans. Circuits Syst. I, Reg. Papers., vol. 59, no. 4, pp. 864-874, Apr. 2012.
    [5] A. Khaligh and Z. Li, “Battery, ultracapacitor, fuel cell, and hybrid energy storage systems for electric, hybrid electric, fuel cell, and plugin hybrid electric vehicles: state of the art,” IEEE Trans. Veh. Technol., vol. 59, no. 6, pp. 2806-2814, Jul. 2010.
    [6] Y. P. Hsieh, “Novel high efficiency high step-up DC-DC converter with coupled-inductor,” Ph.D. dissertation, Dept. Elect. Eng., Nat. Cheng Kung Univ., Tainan, Taiwan, R.O.C, 2013.
    [7] W. S. Liu, “Analysis and design of cascoded converters for fuel cell power systems,” Ph.D. dissertation, Dept. Elect. Eng., Nat. Cheng Kung Univ., Tainan, Taiwan, R.O.C, 2010.
    [8] Q. Zhao and F. C. Lee, “High-efficiency, high step-up DC-DC converters,” IEEE Trans. Power Electron., vol. 18, no. 1, pp. 65-73, Jan. 2003.
    [9] C. M. Huang, T. J. Liang, R. L. Lin and J. F. Chen, “A novel constant power control circuit for HID electronic ballast,” IEEE Trans. Power Electron., vol. 22, no. 5, pp. 1573-1582, Sep. 2007.
    [10] T. Shimizu, K. Wada and N. Nakamura, “Flyback-type single-phase utility interactive inverter with power pulsation decoupling on the dc input for an ac photovoltaic module system,” IEEE Trans. Power Electron., vol. 24, no. 2, pp. 376-387, Feb. 2009.
    [11] L. Palma, M. H. Todorovic and P. Enjeti, “A high gain transformer-less dc-dc converter for fuel-cell applications,” in Proc. IEEE PESC, pp. 2514-2520, 2005.
    [12] G. Wu, X. Ruan and Z. Ye, “Non-isolated high step-up DC-DC converters adopting switched-capacitor cell,” IEEE Trans. Ind. Electron., vol. 62, no. 1, pp. 383-393, Jan. 2015.
    [13] B. Axelrod, Y. Berkovich, and A. Ioinovici, “Switching-capacitor/ Switching-inductor structures for getting transformerless hybrid DC-DC PWM converters,” IEEE Trans. Circuits and Systems I, vol. 55, no. 2, pp. 687-696, Mar. 2008.
    [14] K. C. Tseng and T. J. Liang, “Analysis of integrated boost-flyback step-up converter,” IEE Proc. Inst. Elect. Eng.-Electric Power Applications, vol. 152, no. 2, pp. 217-225, 2005.
    [15] X. Hu and C. Gong, “A high voltage gain DC-DC converter integrating coupled-inductor and diode-capacitor techniques,” IEEE Trans. Power Electron., vol. 29, no. 2, pp. 789-799, Feb. 2014.
    [16] Y. P. Hsieh, J. F. Chen, T. J. Liang and L. S. Yang, “Novel high step-up dc-dc converter for distributed generation system,” IEEE Trans. Power Electron., vol. 60, no. 4, pp. 1473-1482, Apr. 2013.
    [17] Y. P. Hsieh, J. F. Chen, L. S. Yang, C. Y. Wu and W. S. Liu, “High-conversion-ratio bidirectional DC-DC converter with coupled inductor,” IEEE Trans. Power Electron., vol. 61, no. 1, pp. 210-222, Jan. 2014.
    [18] J. M. Kwon and B. H. Kwon, “High step-up active-clamp converter with input-current doubler and output-voltage doubler for fuel cell power systems,” IEEE Trans. Power Electron., vol. 24, no. 1, pp. 108-155, Jan. 2009.
    [19] K. B. Park, D. Y. Cho and G. W. Moon, “Couple-inductor boost converter with simple resonant technique,” in IECON 39th Annu. Conf. of the IEEE, Vienna, 2013, pp. 584-589.
    [20] C. Chang and M. A. Knights, “Interleaving technique in distributed power conversion systems,” IEEE Trans. Circuits Syst. I, Fundam. Theory Appl., vol. 42, no. 5, pp. 245-251, May. 1995.
    [21] S. Dwari and L. Parsa, “An efficient high-step-up interleaved dc-dc converter with a common active clamp,” IEEE Trans. Power Electron., vol. 26, no. 1, pp. 66-78, Jan. 2011.
    [22] Y. T. Chen, S. M. Shiu and R. H. Liang, “Analysis and design of a zero-voltage-switching and zero-current-switching interleaved boost converter,” IEEE Trans. Power Electron., vol. 27, no. 1, pp. 161-173, Jan. 2012.
    [23] S. H. Hosseini, E. Babaei and T. Nouri, “An interleaved high step-up DC-DC converter with reduced voltage stress across semiconductors,” in Electrical and Computer Engineering, IEEE 27th Canadian Conf., 2014© IEEE. doi: 10.1109/CCECE.2014.6900932
    [24] Y. C. Hsieh, K. Y. Lee and K. F. Liao, “An interleaved bidirectional dc-dc converter with zero-voltage-switching,” in Power Electronics and Drive System, IEEE 10th Int. Conf., Kitakyushu, 2013, pp. 427-432.
    [25] P. L. Wong, P. Xu, B. Yang and F. C. Lee, “Performance improvements of interleaving VRMs with coupling inductors,” IEEE Trans. Power Electron., vol. 16, no. 4, pp. 499-507, Jul. 2001.
    [26] X. Zhou, P. Xu and F. C. Lee, “A Novel Current-Sharing Control Technique for Low-Voltage High-Current Voltage Regulator Module Applications,” IEEE Trans. Power Electron., vol. 15, no. 6, pp. 1153-1162, Nov. 2000.
    [27] X. Tan and X. Ruan, “Optimal design of DCM LCC resonant converter with inductive filter based on mode boundary map,” IEEE Trans. Power Electron., vol. 30, no. 8, pp. 4144-4155, Aug. 2015.
    [28] C. Mclyman, “DC inductor design using gapped cores,” in Transformer and inductor design handbook, 3rd ed. New York: Marcel Dekker, 2004, ch.8, pp. 254-271.
    [29] Z. Zhang, “Coupled-inductor magnetics in power electronics,” Ph.D. dissertation, California Inst. of Technology, Pasadena, 1986.
    [30] J. H. Lee, T. J. Liang and J. F. Chen, “Isolated coupled-inductor-integrated DC–DC converter with nondissipative snubber for solar energy applications,” IEEE Trans. Ind. Electron., vol. 61, no. 7, pp. 3337-3348, Jul. 2014.

    下載圖示 校內:2020-01-01公開
    校外:2020-01-01公開
    QR CODE