| 研究生: |
黃冠穎 Huang, Kuan-Ying |
|---|---|
| 論文名稱: |
可程式化系統晶片實現具訊號快速擷取之雙頻GNSS基頻訊號處理器 Implementation of GNSS L1/L2 PSoC Based Baseband Signal Processor With Rapid Acquisition Function |
| 指導教授: |
莊智清
Juang, Jyh-Ching |
| 學位類別: |
碩士 Master |
| 系所名稱: |
電機資訊學院 - 電機工程學系 Department of Electrical Engineering |
| 論文出版年: | 2017 |
| 畢業學年度: | 105 |
| 語文別: | 中文 |
| 論文頁數: | 76 |
| 中文關鍵詞: | PSoC架構 、FPGA 、ARM processor 、GPS 、L1/L2雙頻基頻訊號處理 |
| 外文關鍵詞: | PSoC architecture, FPGA, ARM processor, GPS, L1/L2 dual-frequency baseband signal processing |
| 相關次數: | 點閱:104 下載:3 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
新一代導航衛星除了可以傳送L1頻段訊號外,也可傳送新一代L2以及L5頻段之訊號,若通訊導航接收機可採雙頻架構設計,則得以有效抑制電離層誤差、甚至多路徑效應。因此本篇論文在基於ZYNQ-7000的可程式系統晶片平台,來實作可以即時處理雙頻段的基頻訊號的處理器,透過軟體硬體共同設計的方法完成處理L1與L2雙頻段GNSS基頻訊號處理電路之架構,與透過可程式系統晶片(Programmable System On a Chip, PSoC)內部AXI匯流排架構與ARM處理器溝通,能夠以更小的面積、更低的功耗,獲得更加優異的性能,使用Free-RTOS作業系統進行演算法管理。同時本論文所發展接收機之架構顧慮到L2頻段訊號之電碼長度較長,在硬體資源有限之情況下,傳統訊號搜索方法會導致擷取訊號時間過長,使追蹤訊號之鎖相迴路脫鎖,因此於硬體上實際發展了雙頻快速訊號擷取演算法、透過設計平行處理架構降低擷取時間。在100 MHz的工作時脈下,ㄧ個具有L2頻段衛星訊號即時搜索的時間最慢縮短為36 ms,完成基於PSoC之雙頻即時GNSS接收機訊號接收架構,包含其硬體、軟體以及演算法實作。
The modernized GNSS satellites broadcast signals in three new frequencies to enhance the overall resistance to ionospheric and multipath error. In this research, a real-time dual-frequency GNSS receiver techniques are developed through the design and implementation of a PSoC based baseband signal processor. Through method of software and hardware codesign to complete L1 and L2 dual-frequency PSoC receiver architecture, The hardware communicates with ARM cortex-A9 through the internal AXI bus architecture. The signal processing algorithm is managed by Free-RTOS. Moreover, L1 based L2 signal acquisition embedded algorithms are design and implemented in PSoC receiver for L2 long code that will lead to failure of phase-locked loop. Through parallel processing DSP architecture. The signal of one satellite is stably captured less than 36ms under the 100MHz clock.
[1] 莊智清、黃國興,電子導航,全華科技圖書,2001。
[2] M., “Performance Evaluations of the New GPS L5 and L2 Civil Signals,” Journal of Institute of Navigation, Page(s):199-212, 2004.
[3] MAXIM, “Complete, Direct-Conversion Tuner for DVB-S and Free-to-Air Applications,” available: http://www.maxim-ic.com.
[4] D.W. Lim, S.W. Moon, C. Park, and S.J. Lee,“L1/L2CS GPS Receiver Implementation with Fast Acquisition Scheme”, Position, Location, and Navigation Symposium, 2006 IEEE/ION, Page(s):840-844, 2006.
[5] J. B. Y. Tsui, Fundamentals of Global Positioning System Receivers, A Software Approach. John Wiley & Sons, Inc., 2001.
[6] C. J. Li, M. Q. Lu, Z. M. Feng, and Q. Zhang, “Study on GPS L2C Acquisition Algorithm and Performance Analysis,” Journal of Electronics & Information Technology, Page(s): 296-300, 2010.
[7] J. W. Betz, “The Offset Carrier Modulation for GPS Modernization,” Proceedings of the 1999 International Technical Meeting of ION, Page(s):639-648, January 25-27, 1999.
[8] A. G. Dempster, “Correlators for L2C: Some Considerations,” Inside GNSS, Page(s):32-37, 2006.
[9] B. W. Parkinson, T. Stansell, R. Bread, and K. Gromov, “A History of Satellite Navigation,” Proceedings of the 51st Annual Meeting of ION, Page(s):109-164, 1995.
[10] USRP N210 Datasheet. Available: http://www.ettus.com/content/files/07495_Ettus_N200-210_DS_Flyer_HR_1.pdf
[11] D. Y. Hsu, Spatial Error Analysis: A Unified Application-Oriented Treatment, 1999.
[12] A. Joseph, "GNSS Solutions: Measuring GNSS Signal Strength," Inside GNSS, Page(s): 20-25, 2010.
[13] 蔡秋藤, 基於軟體定義無線電架構之衛星通訊與導航系統設計, 博士論文, 電機工程學系, 國立成功大學, 2014.
[14] 莊智清, 衛星導航, 全華圖書, 2012.