簡易檢索 / 詳目顯示

研究生: 歐柏均
Ou, Po-Chun
論文名稱: 脈衝電鍍銅鋅錫硫薄膜與光電特性分析
The Photo-Electrical Characterization of Cu2ZnSnS4 Deposited by Pulse-Electroplated Method
指導教授: 陳昭宇
Chen, Chao-Yu
學位類別: 碩士
Master
系所名稱: 理學院 - 光電科學與工程學系
Department of Photonics
論文出版年: 2014
畢業學年度: 102
語文別: 中文
論文頁數: 111
中文關鍵詞: 銅鋅錫硫太陽能電池硫化電鍍
外文關鍵詞: Cu2ZnSnS4, sulfurization, electroplating, electrodeposition
相關次數: 點閱:86下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • CZTS 具有直接能隙、極高的光吸收係數、無毒、材料含量充沛及優
    異的穩定性等優勢,被認為是極具潛力的薄膜太陽能材料。本研究提出
    新的電鍍方式製備銅錫鋅(CZT)合金薄膜並優化薄膜特性。
    本文提出兩階段電鍍法進行銅鋅錫硫(CZTS)薄膜的沉積,在前半段
    的電鍍時間進行定電壓沉積,先在基板上沉積完整的元素層;後半段藉
    由脈衝電鍍的高低電壓切換特性,將不均勻的元素層反覆進行氧化和還
    原反應,最後使薄膜呈現出平整且緻密的特性。接著進行 550torr 高壓硫
    化,並將硫化溫度提升至 550℃,得到尺寸約 1μm 的 CZTS 晶粒,薄膜
    均勻且平整,以利後續的元件製程。
    CZTS 薄膜太陽能電池的結構為 SLG/Mo/CZTS/CdS/ZnO/ITO/Al,以
    兩階段電鍍法製備而成的 CZTS 薄膜,元件效率達到 0.796%。

    SUMMARY
    In this study, we propose an novel electrodeosition approach to deposit CuZnSn (CZT) films and optimize the quality of CZT films. Cu2ZnSnS4 thin film were deposited by two-step electroplating and annealed under sulfurization at 550℃ for 550 torr. Solar cells with the structure SLG/Mo/CZTS/CdS/ZnO/ITO/Al were fabricated by two-step electroplating. The best cell exhibited the conversion efficiency of 0.796%.

    INTRODUCTION
    Cu2ZnSnS4(CZTS) are one of the most promising materials for thin-film solar due to their abundant materials, low-cost, non-toxic, suitable direct band-gap energy of 1.45-1.5eV, and high optical absorption coefficients( over 104cm-1).

    Electrodeposited approach is known as low-cost, non-vacuum and high throughput. Scragg et al. reported on CZTS solar cell prepared by subsequent electrodeposition of metallic precursors in the order Cu/Sn/Cu/Zn, annealed in an atmosphere containing Sulphur. The resulting film exhibited more uniform and highly large grains, leading to reduce grain boundary and recombination. The best photovoltaic device was 3.2%. Ahmed et al. prepared CZTS by electrodeposition of Cu/Zn/Sn metal stacks, annealed in a Sulfur atmosphere. A marked photovoltaic efficiency was 7.3%.

    In this study, we propose a novel electrodeosition approach to deposit CZT films and optimize the quality of CZT films. Cu2ZnSnS4 thin film were deposited by two-step electroplating. Every layer of Films was first deposited by the first step with potentiostat electroplating, which was transferred to deposit by the second step electroplating with voltage pluse electroplate. The goal is to control thickness of films at first step, subsequently, and improve the surface of films.

    摘要………………………………………………………………………Ⅰ Extended Abstract…………………………………Ⅱ 誌謝………………………………………………………………………Ⅷ 目錄………………………………………………………………………Ⅸ 表目錄…………………………………………………………………ⅩⅠ 圖目錄…………………………………………………………………ⅩⅡ 第一章 緒論………………………………………………………………1 1-1 前言…………………………………………………………………1 1-2 太陽能電池介紹……………………………………………………2 1-3 太陽能電池工作原理………………………………………………7 1-4 銅鋅錫硫太陽能電池之發展……………………………………13 1-5 研究動機…………………………………………………………15 第二章 文獻回顧…………………………………………………………16 2-1 銅鋅錫硫材料特性………………………………………………16 2-2 銅鋅錫硫太陽能電池結構與各層分析…………………………18 2-3 銅鋅錫硫薄膜之主要製程………………………………………23 2-4 電鍍製程原理……………………………………………………26 2-5 氧化還原電位與循環伏安法……………………………………31 2-6 電鍍銅鋅錫硫薄膜………………………………………………33 第三章 實驗製程與分析…………………………………………………38 3-1 實驗材料…………………………………………………………38 3-2 實驗流程與設計…………………………………………………39 3-3 製程設備…………………………………………………………43 3-4 分析儀器…………………………………………………………46 第四章 結果與討論………………………………………………………53 4-1 脈衝電鍍對銅鋅錫硫薄膜的影響………………………………53 4-2 硫化後處理對銅鋅錫硫薄膜的影響……………………………65 4-3 不同電鍍方式的元件分析………………………………………100 第五章 結論與未來發展..………………………………………………105 第六章 參考文獻..………………………………………………………107

    1. 翁敏航, 太陽能電池:原理、元件、材料、製程與檢測技術. 2010, 東華出版社.
    2. D. Chapin, C.F., and G. Pearson J., Appl. Phys., 1954. vol. 25: p. p. 676.
    3. Zhao J, W.A., Green MA, Ferrazza F., Novel 19.8% efficient "honeycomb"textured multicrystalline and 24.4% monocrystalline silicon solar cells. 1998. 73: p. 1991-1993.
    4. Green, M.A., et al., Solar cell efficiency tables (version 37). Progress in Photovoltaics: Research and Applications, 2011. 19(1): p. 84-92.
    5. Schultz, O., S.W. Glunz, and G.P. Willeke, SHORT COMMUNICATION: ACCELERATED PUBLICATION: Multicrystalline silicon solar cells exceeding 20% efficiency. Progress in Photovoltaics: Research and Applications, 2004. 12(7): p. 553-558.
    6. Peumans, P. and S.R. Forrest, Very-high-efficiency double-heterostructure copper phthalocyanine/C[sub 60] photovoltaic cells. Applied Physics Letters, 2001. 79(1): p. 126.
    7. Wanli Ma, C.Y., Xiong Gong, Kwanghee Lee, and Alan J. Heeger, Thermally stable, Efficient polymer solar cells with nanoscale control of the interpenetrating network morophology. Adv. Funct. Mater., 2005. 15: p. 1617-1622.
    8. S. Chaberek, R.J.A., Dye-Sensitized Photopolymerization Processes. Ⅱ. A Comparison of the Photoactivities of Thionine and Methylene Blue. The Journal of Physical Chemistry 1965. 69(2): p. 647-656.
    9. D. R. Kearns, R.A.H., A. U. Khan, R. W. Chambers, and and P. Radlick, Evidence for the Participation of lZ,+ and ‘A, Oxygen in Dye-Sensitized. Journal of the American Chemical Society 1967. 89(21): p. 5456-5457.
    10. M. M. H. Tsubomura, Y.N.a.T.A., Dye sensitized zinc oxide: aqueous electrolyte: platinum photocell. Nature, 1976. 261: p. p.402-p.403.
    11. Gratzel, M., Solar Energy Conversion by Dye-Sensitized Photovoltaic Cells. Inorganic Chemistry, 2005. 44(20): p. p.6841-p.6851.
    12. Zhong-Sheng Wang, M.Y., Kazuhiro Sayama, and Hideki Sugihara, Electronic-Insulating Coating of CaCO3on TiO2 Electrode in Dye-Sensitized Solar Cells Improvement of Electron Lifetime and. Chem. Mater., 2006. 18: p. p.2912 - p.2916.
    13. Burschka, J., et al., Sequential deposition as a route to high-performance perovskite-sensitized solar cells. Nature, 2013. 499(7458): p. 316-9.
    14. X. Wu, R.G.D., D.S. Albin, T.A. Gessert,C. DeHart, J.C. Keane, A. Duda, T.J. Coutts,S. Asher, D.H. Levi, H.R. Moutinho, Y. Yan, T. Moriarty, S. Johnston, K. Emery, and P. Sheldon, High-Efficiency CTO/ZTO/CdS/CdTe Polycrystalline Thin-Film Solar Cells. NCPV Program Review Meeting Lakewood, Colorado 14-17, 2001.
    15. K. Mitchell, C.E., J. Ermer, D. Pier, SINGLE AND TANDEM JUNCTION CuInSe2 CELL AND MODULE TECHNOLOGY. 1988. 88: p. p.1384-p.1389.
    16. Martin A. Green , K.E. and Y.H. , Wilhelm Warta and Ewan D. Dunlop, Solar cell efficiency tables (version 42). PROGRESS IN PHOTOVOLTAICS: RESEARCH AND APPLICATIONS, 2013. 21: p. 827-837.
    17. Part II – Photovoltaic Cell I-V Characterization Theory and LabVIEW Analysis Code. 2012.
    18. Todorov, T.K., et al., Beyond 11% Efficiency: Characteristics of State-of-the-Art Cu2ZnSn(S,Se)4 Solar Cells. Advanced Energy Materials, 2012.
    19. Wei Wang, M.T.W., Oki Gunawan,Tayfun Gokmen,Teodor K. Todorov,Yu Zhu,David B. Mitzi*, Device Characteristics of CZTSSe Thin-Film Solar Cells with 12.6% Efficiency. Adv. Energy Mater. 2013, DOI: 10.1002/aenm.201301465, 2013.
    20. Hsu, W.-C., et al., Growth mechanisms of co-evaporated kesterite: a comparison of Cu-rich and Zn-rich composition paths. Progress in Photovoltaics: Research and Applications, 2012.
    21. Qijie Guo, G.M.F., Wei-Chang Yang, Bryce C. Walker, Eric A. Stach, Hugh W. Hillhouse,* and Rakesh Agrawal*, Fabrication of 7.2% Efficient CZTSSe Solar Cells Using CZTS Nanocrystals. J. AM. CHEM., 2010. 132: p. 17384-17386.
    22. Ahmed, S., et al., A High Efficiency Electrodeposited Cu2ZnSnS4 Solar Cell. Advanced Energy Materials, 2012. 2(2): p. 253-259.
    23. Green, M.A., et al., Solar cell efficiency tables (version 36). Progress in Photovoltaics: Research and Applications, 2010. 18(5): p. 346-352.
    24. Anfersson, B.A., Materials Availability for Large-scale Thin film Photovoltaics. Prog. Photovolt. Res. Appl., 2000. 8: p. 61-76.
    25. Kishore Kumar, Y.B., et al., Preparation and characterization of spray-deposited Cu2ZnSnS4 thin films. Solar Energy Materials and Solar Cells, 2009. 93(8): p. 1230-1237.
    26. Schorr, S., Structural aspects of adamantine like multinary chalcogenides. Thin Solid Films, 2007. 515(15): p. 5985-5991.
    27. Shiyou Chen, X. G. Gong, Aron Walsh, and Su-Huai Wei, Defect physics of the kesterite thin-film solar cell absorber Cu2ZnSnS4. Appl. Phys. Lett., 2010. 96: p. 021902.
    28. Chen, S.G., X. G. Walsh, Aron Wei, Su-Huai, Crystal and electronic band structure of Cu2ZnSnX4(X=S and Se) photovoltaic absorbers: First-principles insights. Applied Physics Letters, 2009. 94(4): p. 041903.
    29. Singh, U.P. and S.P. Patra, Progress in Polycrystalline Thin-Film Cu(In,Ga)Se2 Solar Cells. International Journal of Photoenergy, 2010. 2010: p. 1-19.
    30. R. R. Potter, C.E., and L. B. Fabick, Device analysis of CuInSe2/(Cd,Zn)S/ZnO solar cells. Proceedings of the Conference Record of the 18th IEEE Photovoltaic Specialists Conference, 1985: p. pp.1659-1664.
    31. S. Duchemin, V.C., J. C. Yoyotte, J. Bougnot, and M.Savelli, Backwall CdS(n)-CuInSe2(p) sprayed solar cells. Proceedings of the 8th European Photovoltaic Solar Energy Conference, 1988: p. pp. 1038-1042.
    32. Chen, Q.M., et al., Preparation of Cu2ZnSnS4 Film by Printing Process for Low-Cost Solar Cell. Advanced Materials Research, 2011. 335-336: p. 1406-1411.
    33. John H. Scofield, A.D., D. Albin, B.L. Ballard, P.K. Predecki, Sputtered molybdenum bilayer back contact for copper indium diselenide-based polycrystalline thin-film solar cells. Thin Solid Films 1995. 260: p. 296-31.
    34. Romeo, A., et al., Development of thin-film Cu(In,Ga)Se2 and CdTe solar cells. Progress in Photovoltaics: Research and Applications, 2004. 12(23): p. 93-111.
    35. Shin, B., et al., Thin film solar cell with 8.4% power conversion efficiency using an earth-abundant Cu2ZnSnS4absorber. Progress in Photovoltaics: Research and Applications, 2013. 21(1): p. 72-76.
    36. Jimbo, K., et al., Cu2ZnSnS4-type thin film solar cells using abundant materials. Thin Solid Films, 2007. 515(15): p. 5997-5999.
    37. J.-H. Sim, D.-H.S., D.H. Kim, K.-J. Yang, S.-N. Park, J.-K. Kang, Development of 7.41% Efficiency CZTS Solar Cell by Sputtering Process. 2013.
    38. 胡啟章, 電化學原理與方法 Fundamentals and Methods of Electrochemistry. 五南圖書.
    39. David K. Gosser, J., Cyclic Voltammetry:Simulation and Analysis of Reaction Mechanisms, 1993, VCH.
    40. Ennaoui, A., et al., Cu2ZnSnS4 thin film solar cells from electroplated precursors: Novel low-cost perspective. Thin Solid Films, 2009. 517(7): p. 2511-2514.
    41. Li, J., et al., The Cu2ZnSnSe4 thin films solar cells synthesized by electrodeposition route. Applied Surface Science, 2012. 258(17): p. 6261-6265.
    42. Zhang, Y., et al., Cu2ZnSnSe4 thin film solar cells prepared by rapid thermal annealing of co-electroplated Cu–Zn–Sn precursors. Solar Energy, 2013. 94: p. 1-7.
    43. Lehner, J., et al., Structural and compositional properties of CZTS thin films formed by rapid thermal annealing of electrodeposited layers. Journal of Crystal Growth, 2013. 380: p. 236-240.
    44. Araki, H., et al., Preparation of Cu2ZnSnS4 thin films by sulfurizing electroplated precursors. Solar Energy Materials and Solar Cells, 2009. 93(6-7): p. 996-999.
    45. Scragg, J.J., D.M. Berg, and P.J. Dale, A 3.2% efficient Kesterite device from electrodeposited stacked elemental layers. Journal of Electroanalytical Chemistry, 2010. 646(1-2): p. 52-59.
    46. Lin, X., et al., Structural and optical properties of Cu2ZnSnS4 thin film absorbers from ZnS and Cu3SnS4 nanoparticle precursors. Thin Solid Films, 2013. 535: p. 10-13.
    47. Shen, F.Y., et al., A facile method to synthesize high-quality ZnS(Se) quantum dots for photoluminescence. Journal of Alloys and Compounds, 2011. 509(37): p. 9105-9110.
    48. A.O. Awodugba, P.D.a.A.A.I., M.Tech., Optical Properties and Band Offsets of CuS/ZnS Supperlattice. The Pacific Journal of Science and Technology, 2012. 13(1): p. p.206-p.212.
    49. Mitzi, D.B., et al., The path towards a high-performance solution-processed kesterite solar cell. Solar Energy Materials and Solar Cells, 2011. 95(6): p. 1421-1436.
    50. Katagiri, H., et al., Enhanced Conversion Efficiencies of Cu2ZnSnS4-Based Thin Film Solar Cells by Using Preferential Etching Technique. Applied Physics Express, 2008. 1: p. 041201.
    51. Fernandes, P.A., P.M.P. Salomé, and A.F. da Cunha, Study of polycrystalline Cu2ZnSnS4 films by Raman scattering. Journal of Alloys and Compounds, 2011. 509(28): p. 7600-7606.
    52. 宋軍, 謝.庄.劉.郭., 硫化温度對銅鋅錫硫薄膜特性的影響. CHINESE JOURNAL OF MATERIALS RESEARCH, 2013. 27(2): p. p.126-p.130.
    53. Momose, N., et al., Cu2ZnSnS4Thin Film Solar Cells Utilizing Sulfurization of Metallic Precursor Prepared by Simultaneous Sputtering of Metal Targets. Japanese Journal of Applied Physics, 2011. 50: p. 01BG09.
    54. Tanaka, T., et al., Fabrication of Cu2ZnSnS4 thin films by co-evaporation. physica status solidi (c), 2006. 3(8): p. 2844-2847.
    55. Scragg, J.J., Copper Zinc Tin Sulfide Thin Films for Photovoltaics. Synthesis and Characterisation by Electrochemical Methods. 2009, Springer-Verlag.

    下載圖示 校內:2016-02-11公開
    校外:2016-02-11公開
    QR CODE