簡易檢索 / 詳目顯示

研究生: 陳韻安
Chen, Yun-An
論文名稱: 多時期空載傾斜影像建物變遷分析
Change Analysis of Buildings through Multitemporal Oblique Aerial Imagery
指導教授: 饒見有
Rau, Jiann-Yeou
學位類別: 碩士
Master
系所名稱: 工學院 - 測量及空間資訊學系
Department of Geomatics
論文出版年: 2016
畢業學年度: 104
語文別: 中文
論文頁數: 99
中文關鍵詞: 空載傾斜影像分類點雲變遷偵測
外文關鍵詞: Oblique image, Classified Point cloud, Change detection
相關次數: 點閱:144下載:6
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 隨著都市化的發展,都市的環境變化急遽,為了掌控土地資源與土地利用之狀況,如何有效與快速的進行都市環境變遷與監控便顯得更重要。當城市空間資訊往第三維度快速增長時,傳統垂直航拍影像所提供的資訊已不敷使用。然而空載傾斜影像能拍攝較完整的地物立面資訊,且傾斜視角具立體感,人員不需專業訓練即可判釋各式地物,國際上已逐漸應用於都市地區的地物偵測,例如地震後房屋傾倒之全面清查。透過高重疊垂直與多視角傾斜攝影影像,利用自動化特徵匹配產生連結點,搭配地面控制點與空三平差求解影像絕對方位,再透過密集影像匹配技術可產製覆蓋度完整,且點雲密度相當高的三維彩色點雲,尤其傾斜視角的建物牆面資訊能提供更細緻且密集的牆面點雲以利建物判釋。本文以無人飛行載具以及有人機蒐集兩個時期的傾斜與垂直空載影像,並產製兩時期影像的三維點雲。空載影像以物件導向式影像分類法進行分類,利用反投影公式搭配HPR(Hidden point removal)運算子進行可視性分析,並賦予三維點雲的地物類別資訊,形成分類點雲。點雲及分類點雲透過反投影法及HPR運算子重建與後期選定之主影像相同視角的虛擬影像,並針對主影像與虛擬影像進行視覺化分析,找出地物變遷之地區,以進行變遷偵測之目的。此外,前後兩期分類點雲以體元(voxel)取樣,建立相同的區域體元座標系統,在空間中針對建物進行體元對體元的變遷偵測,取得包含建物新增、移除及未改變資訊的分類體元群,並計算獨立建物變遷區塊之體積及總體積。

    Due to the rapidly urbanization development, to monitor the change of city environment is more and more important for urban land resource management. Different to traditional vertical aerial imagery (VAI), the oblique aerial imagery (OAI) is more stereoscopic for manually recognition, and has more information practically on building façade. Various studies has investigated the potential of its applications, such as building seismic damage assessment, building objects extraction, etc. In this study, both VAIs and OAIs are collected from airborne and UAV platform in two different periods for building change detection purpose. Through photogrammetry techniques including orientation reconstruction and dense image matching, the colored high density 3D point clouds of two period data are generated from both VAI and OAI. A pseudo-image has the same viewpoint of a master image can be generated from point clouds by considering hidden points and back-projection. Then, visual analysis is performed on pseudo-images and master images to find the area of change. Also, we apply object-based image analysis (OBIA) to classify the images into six classes of the cyber-city. Then, two period of point clouds with information of classes which is extracted from classified images are generated. To detect the change of buildings, two point clouds are normalized to local voxel coordinate system. Voxel-based change detection is performed to detect the building change in space and calculate the volume.

    目錄 摘要 I 第1章. 緒論 1 1.1. 研究背景 1 1.2. 研究目的與動機 1 1.3. 文獻回顧 3 1.3.1. 建物變遷偵測 3 1.3.2. 影像分類 4 1.3.3. 點雲結構與展示 5 1.4. 論文架構 6 第2章. 儀器設備與實驗測試區 8 2.1. 實驗設備 8 2.1.1. 空載五相機攝影系統 8 2.1.2. SwingletCAM無人飛機系統 8 2.2. 資料來源 9 2.2.1. 實驗測試區 9 2.2.2. 影像資料 10 第3章. 研究方法 12 3.1. 研究流程圖 12 3.2. 空中三角平差 12 3.3. 三維點雲產製 13 3.3.1. 密匹配產製點雲 13 3.3.2. 測區點雲切割 13 3.4. 輔助屬性影像 15 3.4.1. 可視點雲選取及反投影 15 3.4.2. 物件高度影像 17 3.4.3. 梯度影像 17 3.4.4. 邊緣影像 18 3.5. 物件導向式影像分類 18 3.5.1. 多尺度影像物件分割 19 3.5.2. 幾合屬性 19 3.5.3. 波譜屬性 20 3.5.4. 鄰近物件相關屬性 21 3.5.5. 區域成長法 22 3.6. 點雲分類 22 3.6.1. 眾數濾波器 24 3.7. 虛擬影像二維變遷分析 24 3.8. 三維變遷體元計算及處理 25 3.8.1. 體元(voxel)取樣 27 3.8.2. 體元對體元變遷計算 28 3.8.3. 多數濾波器 30 3.8.4. 連通元件 30 3.8.5. X及Y方向門檻數量比例 32 第4章. 研究成果與分析 34 4.1. 三維點雲比較 34 4.1.1. 參數比較 34 4.1.2. 點雲成果分析 38 4.2. 分類點雲 42 4.2.1. 物件導向式影像分類結果 42 4.2.2. 物件導向式影像分類精度分析 49 4.2.3. 分類屬性點雲 54 4.3. 二維影像變遷分析 56 4.3.1. 虛擬影像 56 4.3.2. 分類虛擬影像 58 4.4. 分類體元群之體元取樣比較 60 4.5. 變遷體元群之計算及後處理 65 4.5.1. 二維多數濾波器新增體元 66 4.5.2. 變遷體元群 66 4.5.3. 第一次二維連通元件移除雜訊體元群 69 4.5.4. 三維多數濾波器移除雜訊體元群 72 4.5.5. 第二次二維連通元件移除雜訊體元群 73 4.5.6. X及Y方向門檻數量比例之移除雜訊體元群 74 4.6. 三維空間變遷分析 77 4.7. 正射影像與變遷偵測正確性分析 84 第5章. 結論 92 5.1. 空中三角平差 92 5.2. 點雲產製 93 5.3. 物件導向式影像分類 93 5.4. 分類點雲 93 5.5. 虛擬影像之二維視覺化分析 93 5.6. 分類體元群之三維空間建物變遷分析 94 參考文獻 96

    黃帥豪, 2008. 運用影像處理於航照影像之自動河道變遷分析. 中原大學資訊工程研究所學位論文, 1-80.
    黃韋凱, 林銘郎, 陳良健, 林彥享, 蕭震洋, 2010. 物件導向分析方法應用於遙測影像之分區及崩塌地與人工設施分類. Journal of Photogrammetry and Remote Sensing 15, 29-49.
    楊敏生, 1994. 模糊理論簡介. 數學傳播中央研究院數學研究所發行, 台北.
    鄭雅文, 史天元, 蕭國鑫, 2008. 物件導向分類於高解析度影像自動判釋. Journal of Photogrammetry and Remote Sensing 13, 273-284.
    饒見有, 陳良健, 黃鼎名, 多鏡頭低價位航測數位相機之設計、率定及三維製圖應用.
    朱展毅, 饒見有, 陳智揚, 徐明鎰, 2010. 空載傾斜影像於自動化牆面紋理貼圖之研究, 第二十九屆測量及空間資訊研討會, 國立台北大學, 台北縣, 台灣.
    商樂民, 2014. Monitoring Urbanization in Metropolitan Taipei Using Multi-Temporal Landsat and SPOT Satellite Data.
    Awrangjeb, M., Fraser, C.S., Lu, G., 2015. Building Change Detection from Lidar Point Cloud Data Based on Connected Component Analysis. ISPRS Annals of Photogrammetry, Remote Sensing and Spatial Information Sciences II-3/W5, 393-400.
    Blaschke, T., 2010. Object based image analysis for remote sensing. ISPRS journal of photogrammetry and remote sensing 65, 2-16.
    Byrne, G., Crapper, P., Mayo, K., 1980. Monitoring land-cover change by principal component analysis of multitemporal Landsat data. Remote Sensing of Environment 10, 175-184.
    Gerke, M., 2009. Dense matching in high resolution oblique airborne images. Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci 38, W4.
    Gerke, M., Kerle, N., 2011. Automatic structural seismic damage assessment with airborne oblique Pictometry© imagery. Photogrammetric Engineering & Remote Sensing 77, 885-898.
    Haralick, R.M., Shanmugam, K., 1973. Textural features for image classification. IEEE Transactions on systems, man, and cybernetics, 610-621.
    Honeycutt, C.E., Plotnick, R., 2008. Image analysis techniques and gray-level co-occurrence matrices (GLCM) for calculating bioturbation indices and characterizing biogenic sedimentary structures. Computers & Geosciences 34, 1461-1472.
    Hosoi, F., Nakai, Y., Omasa, K., 2013. 3-D voxel-based solid modeling of a broad-leaved tree for accurate volume estimation using portable scanning lidar. ISPRS journal of photogrammetry and remote sensing 82, 41-48.
    Hua, B., Fu-Long, M., Li-Cheng, J., 2006. Research on Computation of GLCM of Image Texture [J]. Acta Electronica Sinica 1, 155-158.
    Hussain, M., Chen, D., Cheng, A., Wei, H., Stanley, D., 2013. Change detection from remotely sensed images: From pixel-based to object-based approaches. ISPRS Journal of Photogrammetry and Remote Sensing 80, 91-106.
    Jawak, S.D., Panditrao, S.N., Luis, A.J., 2013. Validation of high-density airborne LiDAR-based feature extraction using very high resolution optical remote sensing data. Advances in Remote Sensing 2013.
    Jjumba, A., Dragićević, S., 2016. Towards a voxel-based geographic automata for the simulation of geospatial processes. ISPRS Journal of Photogrammetry and Remote Sensing 117, 206-216.
    Katz, S., Tal, A., Basri, R., 2007. Direct visibility of point sets. ACM Transactions on Graphics 26, 24.
    Khoshelham, K., Elberink, S.O., Xu, S., 2013. Segment-based classification of damaged building roofs in aerial laser scanning data. IEEE Geoscience and Remote Sensing Letters 10, 1258-1262.
    Lambin, E.F., Strahlers, A.H., 1994. Change-vector analysis in multitemporal space: a tool to detect and categorize land-cover change processes using high temporal-resolution satellite data. Remote Sensing of Environment 48, 231-244.
    Mas, J.-F., 1999. Monitoring land-cover changes: a comparison of change detection techniques. International journal of remote sensing 20, 139-152.
    Murakami, H., Nakagawa, K., Hasegawa, H., Shibata, T., Iwanami, E., 1999. Change detection of buildings using an airborne laser scanner. ISPRS Journal of Photogrammetry and Remote Sensing 54, 148-152.
    Nebiker, S., Lack, N., Deuber, M., 2014. Building change detection from historical aerial photographs using dense image matching and object-based image analysis. Remote Sensing 6, 8310-8336.
    Rau, J.-Y., Jhan, J.-P., Hsu, Y.-C., 2015. Analysis of Oblique Aerial Images for Land Cover and Point Cloud Classification in an Urban Environment. Ieee Transactions on Geoscience and Remote Sensing 53, 1304-1319.
    Schilling, A., Schmidt, A., Maas, H.-G., 2012. Tree topology representation from TLS point clouds using depth-first search in voxel space. Photogrammetric Engineering & Remote Sensing 78, 383-392.
    St-Onge, B., Audet, F.-A., Bégin, J., 2015. Characterizing the Height Structure and Composition of a Boreal Forest Using an Individual Tree Crown Approach Applied to Photogrammetric Point Clouds. Forests 6, 3899-3922.
    Stoker, J., 2009. Visualization of multiple-return Lidar data: Using voxels. Photogramm. Eng. Remote Sens 75, 109-112.
    van Rees, E., 2013. Rapidlasso: Efficient Tools for LiDAR Processing. GeoInformatics 16, 14.
    Vu, T.T., Matsuoka, M., Yamazaki, F., 2004. LIDAR-based change detection of buildings in dense urban areas, Geoscience and Remote Sensing Symposium, 2004. IGARSS'04. Proceedings. 2004 IEEE International. IEEE, pp. 3413-3416.
    Wang, M., Tseng, Y.H., 2011. Incremental segmentation of lidar point clouds with an octree‐structured voxel space. The Photogrammetric Record 26, 32-57.
    Whiteside, T., Ahmad, W., 2005. A comparison of object-oriented and pixel-based classification methods for mapping land cover in northern Australia, Proceedings of SSC2005 Spatial intelligence, innovation and praxis: The national biennial Conference of the Spatial Sciences Institute, pp. 1225-1231.
    Xu, S., Vosselman, G., Oude Elberink, S., 2015. Detection and Classification of Changes in Buildings from Airborne Laser Scanning Data. Remote Sensing 7, 17051-17076.
    Zadeh, L.A., 1965. Fuzzy sets. Information and control 8, 338-353.
    Zhigao, Y., Qianqing, Q., Qifeng, Z., 2006. Change Detection in high spatial resolution images based on support vector machine, 2006 IEEE International Symposium on Geoscience and Remote Sensing. IEEE, pp. 225-228.

    下載圖示 校內:立即公開
    校外:立即公開
    QR CODE