| 研究生: |
俞端彥 Yu, Tuan-Yen |
|---|---|
| 論文名稱: |
添加有機鹼對木瓜脂肪分解酵素於naproxen三氟乙硫酯水解分割之影響 Effects of adding organic base on hydrolytic resolution of (R,S)-naproxen trifluoroethyl thioester via papaya lipase |
| 指導教授: |
陳特良
Chen, Teh-Liang 蔡少偉 Tsai, Shau-Wei |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 化學工程學系 Department of Chemical Engineering |
| 論文出版年: | 2006 |
| 畢業學年度: | 94 |
| 語文別: | 中文 |
| 論文頁數: | 59 |
| 中文關鍵詞: | 有機鹼 、Carica papaya脂肪分解酵素 、(R,S)-naproxen三氟乙硫酯 、水解分割 |
| 外文關鍵詞: | (R,S)-naproxen 2,2,2-trifluoroethyl thioester, Carica papaya lipase, hydrolytic resolution, organic base |
| 相關次數: | 點閱:77 下載:1 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
添加有機鹼於酵素催化之反應中具有提高選擇性及增加反應性的優點,而其反應機制至今尚未明確證實。
本論文旨在研究反應溶劑中添加有機鹼的作用,藉以提高木瓜脂肪分解酵素對外消旋naproxen三氟乙硫酯之水解分割反應速率,使得木瓜脂肪分解酵素在硫酯系統中除了可以維持良好的選擇性外,更可提高反應性,以符合工程需要。
論文中嘗試添加三乙基胺、1-methylpiperdine (MP)、三辛基胺等在水溶液中pKa値較高的鹼,以及含氮結構的吡啶與4-dimethylaminopyridine (DMAP)。實驗結果顯示以添加30 mM三辛基胺於系統之反應性提高為1.5倍最佳,接著是添加MP、三乙基胺及吡啶等皆有酵素活化的現象;DMAP則會對酵素產生嚴重抑制,添加4 mM即會造成反應性下降一半。
本論文以基質為naproxen三氟乙酯的反應系統所發展之模式為根據,加以修正後嘗試提出與研究結果相符之理論模式,並試著求出內含之動力學參數。偶合結果顯示所推論的反應機構模式未能完整描述本系統之行為,表示理論模式尚有改進的空間。
Addition of various organic bases to the reaction medium for the enzyme-catalyzed kinetic resolution can enhance the enzyme enantioselectivity and activity; yet there is no exact mechanism proposed for elucidating this effect till now. In this study, we try to find out the base additives effect on papaya lipase-catalyzed hydrolytic resolution of (R,S)-naproxen 2,2,2-trifluoroethyl thioester.
The bases employed in this study include triethylamine, 1-methylpiperdine (MP), and trioctylamine of higher pKa values, as well as pyridine and 4-dimethylaminopyridine (DMAP) containing a pyridine moiety. Trioctylamine is selected as the best enzyme activator, as the initial rate for the (S)-enantiomer increases about 1.5-fold. Moreover, MP, triethylamine and pyridine have less improvement on the lipase performance. On the other hand, DMAP acts as the lipase inhibitor, and half of the enzyme activity remain when adding 4 mM of the base.
By modifying the kinetic model previously proposed for the lipase-catalyzed hydrolysis of (R,S)-naproxen 2,2,2-trifluoroethyl ester, we try to estimate the kinetic constants by adding various bases. Comparisons and elucidations of the experimental data with the theoretical results are also made.
Agranat, I., Caner, H., Intellectual property and chirality of drugs. Drugs Discov. Today, 4, 313-321, 1999.
Antczak, T., Graczyk, J., Szczesna-Antczak, M., Bielecki, S., Activation of Mucor circinelloides lipase in organic medium. J. Mol. Cat. B: Enzym., 19, 287-294, 2002.
Aoyagi, Y., Saitoh, Y., Ueno, T., Horiguchi, M., Takeya, K., Williams, R. M., Lipase TL-mediated kinetic resolution of 5-benzyloxy-1-tert-butyldimethylsilyloxy-2-pentanol at low temperature: concise asymmetric synthesis of both enantiomers of a piperazic acid derivative. J. Org. Chem., 68, 6899-6904, 2003.
Berglund, P., Controlling lipase enantioselectivity for organic synthesis. Biomol. Eng., 18, 13-22, 2001.
Berglund, P., Holmquist, M., Hult, K., Reversed enantiopreference of Candida rugosa lipase supports different modes of binding enantiomers of a chiral acyl donor. J. Mol. Cat. B: Enzym., 5, 283-287, 1998.
Bocola, M., Stubbs, M.T., Sotriffer, C., Hauer, B., Friedrich, T., Dittrich, K., Klebe, G., Structural and energetic determinants for enantiopreferences in kinetic resolution of lipases. Protein Eng., 16, 319-322, 2003.
Bornscheuer, U.T., Pohl, M., Improved biocatalysts by directed evolution and rational protein design. Curr. Opin. Chem. Biology, 5, 137-143, 2001.
Botta, M., Corelli, F., Manetti, F., Tafi, A., Molecular modeling as a powerful technique for understanding small-large molecules interactions. Farmaco, 57, 153-165, 2002.
Chang, C.S., Tsai, S.W., Kuo, J., Lipase-catalyzed dynamic resolution of naproxen 2,2,2-trifluororthyl thioester by hydrolysis in isooctane. Biotechnol. Bioeng., 64, 120-126, 1999.
Chang, C.S., Tsai, S.W., Lin, C.N., Enzymatic resolution of (R,S)-2-arylpropionic acid thioester by Candida rugosa lipase-catalyzed thioesterification or hydrolysis in organic solvent. Tetrahedron: Asymmetry, 9, 2799-2807, 1998.
Chen, C.C., Chen, T.L., Tsai, S.W., Altering lipase activity and enantioselectivity in organic media using organo-soluble bases: implication for rate-limiting proton transfer in acylation step. Biotechnol. Bioeng., 94, 201-208, 2006.
Chen, C.Y., Cheng, Y.C., Tsai, S.W., Lipase-catalyzed dynamic kinetic resolution of (R,S)-fenoprofen thioester in isooctane. J. Chem. Technol. Biotechnol., 77, 699-705, 2002.
Collins, A.N., Sheldrake, G. N., Crosby, J., Chirality in industry Ⅱ. John Willey & Sons, New York, 1997.
Cretich, M., Chiari, M., Carrea, G., Stereoselective synthesis of (S)-(+)-naproxen catalyzed by carboxyl esterase in a multicompartment electrolyzer. J. Biochem. Biophys. Methods, 48, 247-256, 2001.
Crossley, R., Chirality and the biological activity of drugs. CRC Press, Boca Raton, Florida, 1995.
Faber, K., Biotransformations in organic chemistry. Springer, New York, 2000.
Fujii, R., Nakagawa, Y., Hiratake, J., Sogabe, A., Sakata, K., Directed evolution of Pseudomonas aeruginosa lipase for improved amide-hydrolyzing activity. Protein Eng. Des. Sel., 18, 93-101, 2005.
Gandhi, N.N., Application of lipase. J. Am. Oil Chem. Soc., 74, 621-634, 1997.
Garcia-Alles, L.F., Gotor, V., Lipase-catalyzed transesterification in organic media: solvent effects on equilibrium and individual rate constants. Biotechnol. Bioeng., 59, 684-694 1998.
Gotor, V., Brieva, R., Gonzalez, C., Rebolledo, F., Enzymatic aminolysis and transamidation reactions. Tetrahedron, 47, 9207-9214, 1991.
Griebenow, K., Klibanov, A.M., On protein denaturation in aqueous-organic mixtures but not in pure organic solvents. J. Am. Chem. Soc., 118, 11695-11700, 1996.
Gupta, M.N., Roy, I., Enzymes in organic media. Eur. J. Biochem., 271, 2575-2583, 2004.
Harrington, P.J., Lodewijk, E., Twenty years of naproxen technology. Org. Process Res. Dev., 1, 72-76, 1997.
Hirohara, H., Nishizawa, M., Biochemical synthesis of several chiral insecticide intermediates and mechanisms of action of relevant enzymes. Biosci. Biotechnol. Biochem., 62, 1-9, 1998.
Islam, M.R., Mahdi, J.G., Bowen, I.D., Pharmacological importance of stereochemical resolution of enantiomeric drugs. Drug Saf., 17, 149-165, 1997.
Jaeger, K.E., Reetz, M.T., Microbial lipases form versatile tools for biotechnology. Trends Biotechnol., 16, 396-403, 1998.
Klibanov, A.M., Improving enzymes by using them in organic solvents. Nature, 409, 241-246, 2001.
Klibanov, A.M., What is remembered and why? Nature, 374, 596, 1995.
Klibanov, A.M., Why are enzymes less active in organic solvents than in water? Trends Biotechnol., 15, 97-101, 1997.
Kvittingen, L., Some aspects of biocatalysis in organic solvents. Tetrahedron, 50, 8253-8274, 1994.
Laane, C., Boeren, S., Vos, K., Veeger, C., Rules for optimization of biocatalysis in organic solvents. Biotechnol. Bioeng., 30, 81-87, 1987.
Lee, M.Y., Dordick, J.S., Enzyme activation for nonaqueous media. Curr. Opin. Biotechnol., 13, 376-384, 2002.
Lewis, A.J., Furst, D.E., Nonsteroidal anti-inflammatory drugs. Marcel Dekker, New York, 1994.
Lin, C.N., Tsai, S.W., Dynamic kinetic resolution of suprofen thioester via coupled trioctylamine and lipase catalysis. Biotechnol. Bioeng., 69, 31-38, 2000.
Muralidhar, R.V., Chirumamilla, R.R., Marchant, R., Ramachandran, V.N., Ward, O.P., Nigam, P., Understanding lipase stereoselectivity. World J. Microb. & Biotechnol., 18, 81-97, 2002.
Murray, R.K., Granner, D.K., Mayes, P.A., Rodwell, V.W., Harper's biochemistry, 24th ed. Appleton & Lange, Connecticut, 1996.
Patel, R.N., Stereoselective biocatalysis. Marcel Dekker, New York, 2000.
Quiros, M., Parker, M.C., Turner, N.J., Tuning lipase enantioselectivity in organic media using solid-state buffers. J. Org. Chem., 66, 5074-5079, 2001.
Sakaiki, K., Giorno, L., Drioli, E., Lipase-catalyzed optical resolution of racemic naproxen in biphasic enzyme membrane reactors. J. Membr. Sci., 184, 27-38, 2001.
Schmid, R.D., Verger, R., Lipases: interfacial enzymes with attractive applications. Angew. Chem. Int. Ed. Engl., 37, 1608-1633, 1998.
Schulze, B., Wubbolts, M.G., Biocatalysis for industrial production of fine Chemicals. Curr. Opin. Biotechnol., 10, 609-615, 1999.
Srinivas, N.R., Barbhaiya, R.H., Midha, K.K., Enantiomeric drug development: issues, considerations, and regulatory requirements. J. Pharm. Sci., 90, 1205-1215, 2001.
Theil, F., Enhancement of selectivity and reactivity of lipases by additives. Tetrahedron, 56, 2905-2919, 2000.
Theil, F., Weidner, J., Ballschuh, S., Kunath, A., Schick, H., Kinetic resolution of acyclic 1,2-diols using a sequential lipase-catalyzed transesterification in organic solvents. J. Org. Chem., 59, 388-393, 1994.
Villeneuve, P., Muderhwa, J.M., Graille, J., Haas, M.J., Customizing lipases for biocatalysis: a survey of chemical, physical and molecular biological approaches. J. Mol. Cat. B: Enzym., 9, 113-148, 2000.
Wandrey, C., Wichmann, R., Production of L-amino acids in the membrane reactor. J. Biotechnol., 1, 85-92, 1987.
Weber, N., Klein, E., Vosmann, K., Mukherjee, K.D., Preparation of long-chain acyl thioesters-thio wax esters-by the use of lipases. Biotechnol. Lett., 20, 687-691, 1998.
Zaks, A., Enzymes in organic solvents: biocatalysts for industry. Dordick J. S. Ed., Plenum Press, New York, 161-180, 1991.
Zaks, A., Klibanov, A.M., Enzyme-catalyzed processes in organic solvents. Proc. Natl. Acad. Sci. USA., 82, 3192-3196, 1985.
吳意珣,木瓜脂肪分解酵素對(R,S)-profen硫酯之動力分割及動態動力分割。國立成功大學博士論文,2005。
蔡少偉,(S)-naproxen製程技術發展。化工資訊,33-39,1999年11月。