| 研究生: |
胡采梅 Hu, Tsai-Mei |
|---|---|
| 論文名稱: |
具分段激發疊圈型感應耦合結構之非接觸式供電陣列軌道 Contactless Power Array Track with Segment-excited Overlapping-circle Inductive Coupled Structure |
| 指導教授: |
李嘉猷
Lee, Jia-You |
| 學位類別: |
碩士 Master |
| 系所名稱: |
電機資訊學院 - 電機工程學系 Department of Electrical Engineering |
| 論文出版年: | 2016 |
| 畢業學年度: | 104 |
| 語文別: | 中文 |
| 論文頁數: | 67 |
| 中文關鍵詞: | 非接觸式供電陣列 、疊圈型耦合結構陣列 、分段激發控制 |
| 外文關鍵詞: | Contactless power array track, Overlapping-circle coupled structure array, Segment-excited control |
| 相關次數: | 點閱:73 下載:4 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
針對軌道型公眾運輸電動車之電力供應,本文應用非接觸式電動車用電能傳輸技術,研製具分段激發疊圈型感應耦合結構之非接觸式供電陣列軌道。文中為增進電能傳輸之穩定度,首先運用多環形線圈結構以提供平面式均勻磁場,並為提升整體傳輸效率,接著研發單晶片控制分段激發陣列軌道,最後提出具均勻磁場之分段激發疊圈型感應耦合結構陣列。藉由理論分析諧振架構以提升供電軌道傳輸能力,並依據磁場模擬軟體之模擬結果選用合適的線圈參數以及交疊方式,以提高電動車於供電陣列軌道上間距與水平偏移容忍度。最後經實驗量測結果,供電陣列軌道於間距15 cm精準對位下其輸出功率360 W時整體系統最大傳輸效率為89.93%,輸出效率82.95%時系統最大輸出功率為759 W。
This thesis is aimed to utilize the technology of contactless power transmission and implement contactless power array track with segment -excited overlapping-circle inductive coupled structure for power supply of public transportation. First, to improve the stability of power transmission for moving EVs, overlapping-circle inductive coupled structure array is used to provide a uniform distribution of magnetic field. Second, to raise efficiency of overall system, we designed that segment-excited array track controlled by MCU. After that, the transmitting ability is improved by analyzing resonant circuit. Moreover, overlapping-circle inductive coupled structure array is proposed to provide a smooth magnetic field. Proper parameters of coils and lapping way are decided based on magnetic simulation results, so as to increase tolerance of vertical and horizontal offset for EVs on the power track. Based on the experimental results with 15-cm distance, the maximum efficiency comes up to 89.9% with 360-W output power, and the maximum output power of overall system is 759 W with efficiency of 82.95%.
[1] F. Sato, J. Murakami, H. Matsuki, S. Kikuchi, K. Harakawa, and T. Satoh, “Stable energy transmission to moving loads utilizing new CLPS,” IEEE Trans. Magn., vol. 32, no. 5, pp. 5034–5036, Sep. 1996.
[2] S. Lukic and Z. Pantic, “Cutting the cord: Static and dynamic inductive wireless charging of electric vehicles,” IEEE Electrific. Mag., vol. 1, no. 1, pp. 57–64, Nov. 2009.
[3] S. Li and C. C. Mi, “Wireless power transfer for electric vehicle application,” IEEE J. Emerg. Sel. Topics Power Electron., vol. 3, no. 1, pp. 4–17, Mar. 2015.
[4] J. Lastowiecki and P. Staszewski, “Sliding transformer with long magnetic circuit for contactless electrical energy delivery to mobile receivers,” IEEE Trans. Ind. Electron., vol. 53, no. 6, pp. 1943–1948, Dec. 2006.
[5] G. A. J. Elliott, G. A. Covic, D. Kacprzak, and J. T. Boys, “A new concept: asymmetrical pick-ups for inductively coupled power transfer monorail systems,” IEEE Trans. Magn., vol. 42, no. 10, pp. 3389–3391, Oct. 2006.
[6] D. Kacprzak, G. A. Covic, and J. T. Boys, “An improved magnetic design for inductively coupled power transfer system pickups,” IEEE Trans. Magn., vol. 2, pp. 1133–1136, Dec. 2005.
[7] H. L. Li, A. P. Hu, G. A. Covic, and C. S. Tang, “Optimal coupling condition of IPT system for achieving maximum power transfer,” IET Electron. Lett., vol. 45, no. 1, pp. 76–77, Jan. 2009.
[8] J. T. Boys, G. A. J. Elliott, and G. A. Covic, “An appropriate magnetic coupling co-efficient for the design and comparison of ICPT pickups,” IEEE Trans. Power Electron., vol. 22, no. 1, pp. 333–335, Jan. 2007.
[9] A. V. D. Bossche and P. Sergeant, “Inductive coupler for contactless power transmission,” IET Elect. Power Appl., vol. 2, no. 1, pp. 1–7, Jan. 2008.
[10] Z. Ruihua, Z. Ying, C. Hua, and D. Yumei, “Study and experiment of large power linear contactless power supply system for moving apparatus,” in Proc. ICEMS, 2011, pp. 1–4.
[11] J. A. Taylor, N. L. Zhen, J. Casanova, and J. Lin, “A wireless power station for laptop computers,” in Proc. IEEE Radio Wireless Symp., 2010, pp. 625–628.
[12] H. Matsuki, M. Shiiki, K. Murakami, and T. Yamamoto, “Investigation of coil geometry for transcutaneous energy transmission for artificial heart,” IEEE Trans. Magn., vol. 28, no. 5, pp. 2406–2408, Sep. 1992.
[13] S. Fumihiro, T. Nomoto, G. Kano, H. Matsuki, and T. Sato, “A new contactless power-signal transmission device for implanted functional electrical stimulation (FES),” IEEE Trans. Magn., vol. 40, no. 4, pp. 2964–2966, Jul. 2004.
[14] S. Eroglu, G. Friedman, and Richard L. Magin, “Estimate of losses and signal-to-noise ratio in planar inductive micro-coil detectors used for NMR,” IEEE Trans. Magn., vol. 37, no. 4, pp. 2787–2789, Sep. 2002.
[15] G. R. Nagendra, L. Chen, G. A. Covic, and J. T. Boys, “Detection of EVs on IPT highways,” IEEE J. Emerg. Sel. Topics Circuits Syst., vol. 2, no. 3, pp. 584–597, Feb. 2014.
[16] C. Fernandez, P. Zumel, A. Lazaro, and A. Barrado, “Analysis of the contact-less power supply for a moving load,” in Proc. IECON’06, 2006, pp. 1987–1992.
[17] S. -I. Adachi, F. Sato, S. Kikuchi, and H. Matsuki, “Consideration of contactless power station with selective excitation to moving robot,” IEEE Trans. Magn., vol. 35, no. 5, pp. 3583–3585, Sep. 1999.
[18] J. d. Boeij, E. Lomonova, and J. Duarte, “Contactless planar actuator with manipulator: a motion system without cables and physical contact between the mover and the fixed world,” in Conf. Rec. IEEE IAS Annu. Meeting, 2008, pp. 1–8.
[19] Y. Zhang, T. Lu, Z. Zhao, F. He, K. Chen, and L. Yuan, ” Selective wireless power transfer to multiple loads using receivers of different resonant frequencies,” IEEE Trans. Power Electron., vol. 30, no. 11, pp. 6001–6005, Nov. 2015.
[20] S. Choi, J. Huh, W. Y. Lee, S. W. Lee, and C. T. Rim, “New cross-segmented power supply rails for roadway-powered electric vehicles,” IEEE Trans. Power Electron., vol. 28, no. 12, pp. 5832–5841, Dec. 2013.
[21] H. Y. Shen, J. Y. Lee, and T. W. Chang, ” Study of contactless inductive charging platform with core array structure for portable products,” in Proc. Int. Conf. Consumer Electron., 2011, pp. 756–759.
[22] M. Budhia, C. Y. Huang, G. A. Covic, and J. T. Boys, “Development of a single-sided flux magnetic coupler for electric vehicle IPT charging systems,” IEEE Trans. Ind. Electron., vol. 60, no. 1, pp. 318–328, Jan. 2013.
[23] S. Y. R. Hui and W. C. Ho, “A new generation of universal contactless Battery Charging platform for portable Consumer Electronic equipment,” IEEE Trans. Power Electron., vol. 20, no. 3, pp. 620–627, Jul. 2005.
[24] Y. H. Kim and K. H. Jin, “Design and implementation of a rectangular-type contactless transformer,” IEEE Trans. Ind. Electron., vol. 58, no. 12, pp. 5380–5384, Dec. 2011.
[25] C. S. Wang, G. A. Covic, and O. H. Stielau, “Power transfer capability and bifurcation phenomena of loosely coupled inductive power transfer systems,” IEEE Trans. Ind. Electron., vol. 51, no. 6, pp. 148–157, Feb. 2004.
[26] UCC3895 Data Sheet, Texas Instruments Inc., 2013.
[27] IR2110 Data Sheet, International Rectifier Inc., 2005.
[28] N. O. Sokal and A. D. Sokal, “Class E-a new class of high-efficiency tuned single-ended switching power amplifiers.” IEEE J. Solid-State Circuits, vol. 10, no. 3, pp. 168–176, Jun. 1975.
[29] PIC18F4520 Data Sheet, Microchip Technology Inc., 2004.
[30] 曾百由,微處理器原理與應用組合語言與PIC18微控制器,五南圖書出版公司,台灣,2009年。
[31] J. Huh, S. W. Lee, W. Y. Lee, G. H. Cho, and C. T. Rim, “Narrow-width inductive power transfer system for online electrical vehicles,” IEEE Trans. Power Electron., vol. 26, no. 12, pp. 3666–3679, Dec. 2011.
[32] S. Y. Choi, B. W. Gu, S. Y. Jeong, and C. T. Rim, “Advances in wireless power transfer systems for roadway-powered electric vehicles,” IEEE J. Emerg. Sel. Topics Power Electron., vol. 3, no. 1, pp. 2168–6777, Mar. 2015.
[33] C. Park, S. Lee, S. Y. Jeong, G. H. Cho, and C. T. Rim, “Ultraslim S-type power supply rails for roadway-powered electric vehicles,” IEEE Trans. Power Electron., vol. 30, no. 11, pp. 6446–6455, Nov. 2015.
[34] S. Y. Choi, S. Y. Jeong, B. W. Gu, G. C. Lim, and C. T. Rim, “Advances in wireless power transfer systems for roadway-powered electric vehicles,” IEEE Trans. Power Electron., vol. 30, no. 11, pp. 6456–6468, Nov. 2015.
[35] 周瑋潔,自走機器人用非接觸式分段激發感應供電軌道之研究,國立成功大學電機工程學系碩士論文,2007年。
[36] 陳勝建,非接觸式編織型饋電軌道之研究,國立成功大學電機工程學系碩士論文,2009年。
[37] 童子原,電動載具用非接觸式感應饋電軌道:高功率交流正弦激勵電源系統之研製,國立成功大學電機工程學系碩士論文,2010年。
[38] 蘇哲彬,電動載具用非接觸式感應饋電軌道:交錯式編織型陣列區塊耦合系統之研製,國立成功大學電機工程學系碩士論文,2010年。
[39] 張孟詔,電動載具用非接觸式感應饋電軌道:載具側三埠式充電/供電系統,國立成功大學電機工程學系碩士論文,2010年。
[40] 張遠帆,具疊圈型感應耦合結構陣列之非接觸式電動車供電軌道,國立成功大學電機工程學系碩士論文,2013年。
[41] 楊昆翰,非接觸式片狀感應供電軌道系統之研製,國立成功大學電機工程學系碩士論文,2013年。
[42] 蔡霈裕,多環交疊型無線充電平台之優化設計,國立成功大學電機工程學系碩士論文,2014年。