簡易檢索 / 詳目顯示

研究生: 胡采梅
Hu, Tsai-Mei
論文名稱: 具分段激發疊圈型感應耦合結構之非接觸式供電陣列軌道
Contactless Power Array Track with Segment-excited Overlapping-circle Inductive Coupled Structure
指導教授: 李嘉猷
Lee, Jia-You
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 電機工程學系
Department of Electrical Engineering
論文出版年: 2016
畢業學年度: 104
語文別: 中文
論文頁數: 67
中文關鍵詞: 非接觸式供電陣列疊圈型耦合結構陣列分段激發控制
外文關鍵詞: Contactless power array track, Overlapping-circle coupled structure array, Segment-excited control
相關次數: 點閱:73下載:4
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 針對軌道型公眾運輸電動車之電力供應,本文應用非接觸式電動車用電能傳輸技術,研製具分段激發疊圈型感應耦合結構之非接觸式供電陣列軌道。文中為增進電能傳輸之穩定度,首先運用多環形線圈結構以提供平面式均勻磁場,並為提升整體傳輸效率,接著研發單晶片控制分段激發陣列軌道,最後提出具均勻磁場之分段激發疊圈型感應耦合結構陣列。藉由理論分析諧振架構以提升供電軌道傳輸能力,並依據磁場模擬軟體之模擬結果選用合適的線圈參數以及交疊方式,以提高電動車於供電陣列軌道上間距與水平偏移容忍度。最後經實驗量測結果,供電陣列軌道於間距15 cm精準對位下其輸出功率360 W時整體系統最大傳輸效率為89.93%,輸出效率82.95%時系統最大輸出功率為759 W。

    This thesis is aimed to utilize the technology of contactless power transmission and implement contactless power array track with segment -excited overlapping-circle inductive coupled structure for power supply of public transportation. First, to improve the stability of power transmission for moving EVs, overlapping-circle inductive coupled structure array is used to provide a uniform distribution of magnetic field. Second, to raise efficiency of overall system, we designed that segment-excited array track controlled by MCU. After that, the transmitting ability is improved by analyzing resonant circuit. Moreover, overlapping-circle inductive coupled structure array is proposed to provide a smooth magnetic field. Proper parameters of coils and lapping way are decided based on magnetic simulation results, so as to increase tolerance of vertical and horizontal offset for EVs on the power track. Based on the experimental results with 15-cm distance, the maximum efficiency comes up to 89.9% with 360-W output power, and the maximum output power of overall system is 759 W with efficiency of 82.95%.

    中文摘要 I 英文摘要 II 英文延伸摘要 III 誌謝 VII 目錄 VIII 表目錄 XI 圖目錄 XII 第一章 緒論 1 1-1 研究目的與背景 1 1-2 非接觸式電能傳輸之應用 2 1-3 研究方法 4 1-4 論文大綱 6 第二章 非接觸感應耦合原理 7 2-1 前言 7 2-2 電磁感應原理 7 2-3 感應線圈之非理想效應 10 2-3-1 集膚效應 10 2-3-2 近接效應 12 2-4 非接觸式感應耦合結構電路模型建立 13 2-4-1 變壓器等效模型分析 13 2-4-2 耦合能力之量測 15 2-5 分段激發控制機制 16 第三章 疊圈型感應耦合結構分析 18 3-1 前言 18 3-2 感應耦合結構分析 18 3-2-1 半徑模擬分析 19 3-2-2 偏移量分析 20 3-2-3 交疊方式分析 21 3-3 諧振電路分析 24 3-3-1 初級側諧振分析 25 3-3-2 次級側諧振分析 26 3-3-3 反射阻抗分析 27 3-3-4 品質因數分析 29 3-4 線圈設計概念 30 第四章 非接觸式電動車供電軌道系統電路 33 4-1 前言 33 4-2 整體系統電路架構 33 4-3 疊圈型感應耦合結構參數設計 34 4-4 非接觸式供電軌道電路系統 36 4-4-1 供電軌道電路 36 4-4-2 電能拾取電路 38 4-5 分段激發控制系統 39 4-5-1 分段激發訊號發送電路 40 4-5-2 單晶片控制電路 42 4-5-3 訊號感測電路 44 4-5-4 板塊電源開關電路 45 4-6 非接觸式電磁感應系統設計流程 46 第五章 系統模擬與實驗量測 49 5-1 前言 49 5-2 供電軌道系統規格 49 5-3 SIMPLIS電路模擬 50 5-4 供電軌道電路實做與波形量測 53 5-5 分段激發電路量測 56 5-6 實驗結果與分析討論 59 第六章 結論與未來研究方向 61 6-1 結論 61 6-2 未來研究方向 62 參考文獻 63 表目錄 頁數 表3-1 初級側諧振補償電容 28 表3-2 各諧振架構之穩定性準則 29 表3-3 各諧振電路之品質因數 30 表4-1 耦合線圈結構參數 34 表5-1 供電軌道電路規格 49 表5-2 軌道及電能拾取器電路模擬參數 50 表5-3 Class E模擬電路元件參數 52 表5-4 整體系統元件規格 53 表5-5 諧振電路及感測線圈參數 53 圖目錄 頁數 圖1-1 非接觸式饋電技術應用範疇 2 圖1-2 非接觸式電動車饋電應用 3 圖1-3 非接觸式電動車供電陣列軌道系統架構 5 圖2-1 非接觸式供電系統基本架構 7 圖2-2 環型線圈場強示意圖 9 圖2-3 電磁感應示意圖 9 圖2-4 集膚效應示意圖 10 圖2-5 集膚深度δ對頻率f變化曲線 11 圖2-6 載流導線近接效應示意圖 12 圖2-7 變壓器耦合電路模型 14 圖2-8 相依電壓源變壓器耦合電路 14 圖2-9 變壓器T等效模型 14 圖2-10 理想變壓器耦合電路模型 14 圖2-11 變壓器反射阻抗電路模型圖 15 圖2-12 分段激發系統示意圖 16 圖2-13 分段激發系統方塊圖 17 圖2-14 分段激發類比電路方塊圖 17 圖2-15 分段激發及感應類比電路圖 17 圖3-1 不同初級側半徑下產生磁通量示意圖 19 圖3-2 單一環形線圈偏移示意圖 20 圖3-3 環形線圈於偏移量變動下互感及耦合係數關係曲線圖 21 圖3-4 環形線圈於不同半徑及不同交疊程度下的磁場模擬圖 22 圖3-5 環形線圈於不同半徑及不同交疊程度下的磁場比較圖 22 圖3-6 耗材量相同交疊方式不同的耦合架構磁場模擬圖 23 圖3-7 耗材量相同交疊方式不同的耦合架構磁場比較圖 23 圖3-8 四種諧振電路架構 24 圖3-9 各點阻抗分析示意圖 29 圖3-10 Q值對頻率變化時功率衰減率示意圖 32 圖4-1 非接觸式電動車供電軌道整體電路系統架構 34 圖4-2 感應耦合結構分層示意圖 35 圖4-3 供電感應耦合結構圖 35 圖4-4 訊號感應耦合結構圖 35 圖4-5 整體供電軌道 35 圖4-6 UCC3895周邊元件選用關係曲線圖 37 圖4-7 供電端整體電路圖 37 圖4-8 電能拾取端整體電路圖 38 圖4-9 分段激發控制系統方塊圖 39 圖4-10 分段激發控制系統整體電路圖 39 圖4-11 分段激發訊號發送電路圖 41 圖4-12 PIC18F4520微控制器腳位圖 42 圖4-13 10位元類比訊號轉換模組結構圖 43 圖4-14 分段激發程式流程圖 44 圖4-15 訊號感測整體電路圖 45 圖4-16 板塊電源開關整體電路圖 45 圖4-17 非接觸式分段激發供電陣列軌道設計流程圖 47 圖4-18 完整硬體電路圖 48 圖5-1 軌道及電能拾取器模擬電路 50 圖5-2 主電路軌道端諧振電路模擬波形 51 圖5-3 主電路電能拾取端諧振電路模擬波形 51 圖5-4 輸出電壓電流模擬波形 51 圖5-5 Class E模擬電路 52 圖5-6 Class E諧振電壓電流模擬波形 52 圖5-7 全橋變流器開關驅動訊號 53 圖5-8 主電路軌道端諧振電路波形 54 圖5-9 主電路電能拾取端端諧振電路波形 54 圖5-10 整體系統傳輸效率量測示意圖 55 圖5-11 主電路輸出電壓電流波形 55 圖5-12 分段激發電路各點量測位置示意圖 57 圖5-13 Class E輸出電流弦波波形 57 圖5-14 偵測線圈負載上之直流電壓電流圖 58 圖5-15 訊號偵測電路隨Class E移動產生之訊號電壓 58 圖5-16 偏移量與效率關係圖 59 圖5-17 間距變動與效率關係圖 60 圖5-18 最大功率輸出波形 60 圖5-19 最大效率輸出波形 60

    [1] F. Sato, J. Murakami, H. Matsuki, S. Kikuchi, K. Harakawa, and T. Satoh, “Stable energy transmission to moving loads utilizing new CLPS,” IEEE Trans. Magn., vol. 32, no. 5, pp. 5034–5036, Sep. 1996.
    [2] S. Lukic and Z. Pantic, “Cutting the cord: Static and dynamic inductive wireless charging of electric vehicles,” IEEE Electrific. Mag., vol. 1, no. 1, pp. 57–64, Nov. 2009.
    [3] S. Li and C. C. Mi, “Wireless power transfer for electric vehicle application,” IEEE J. Emerg. Sel. Topics Power Electron., vol. 3, no. 1, pp. 4–17, Mar. 2015.
    [4] J. Lastowiecki and P. Staszewski, “Sliding transformer with long magnetic circuit for contactless electrical energy delivery to mobile receivers,” IEEE Trans. Ind. Electron., vol. 53, no. 6, pp. 1943–1948, Dec. 2006.
    [5] G. A. J. Elliott, G. A. Covic, D. Kacprzak, and J. T. Boys, “A new concept: asymmetrical pick-ups for inductively coupled power transfer monorail systems,” IEEE Trans. Magn., vol. 42, no. 10, pp. 3389–3391, Oct. 2006.
    [6] D. Kacprzak, G. A. Covic, and J. T. Boys, “An improved magnetic design for inductively coupled power transfer system pickups,” IEEE Trans. Magn., vol. 2, pp. 1133–1136, Dec. 2005.
    [7] H. L. Li, A. P. Hu, G. A. Covic, and C. S. Tang, “Optimal coupling condition of IPT system for achieving maximum power transfer,” IET Electron. Lett., vol. 45, no. 1, pp. 76–77, Jan. 2009.
    [8] J. T. Boys, G. A. J. Elliott, and G. A. Covic, “An appropriate magnetic coupling co-efficient for the design and comparison of ICPT pickups,” IEEE Trans. Power Electron., vol. 22, no. 1, pp. 333–335, Jan. 2007.
    [9] A. V. D. Bossche and P. Sergeant, “Inductive coupler for contactless power transmission,” IET Elect. Power Appl., vol. 2, no. 1, pp. 1–7, Jan. 2008.
    [10] Z. Ruihua, Z. Ying, C. Hua, and D. Yumei, “Study and experiment of large power linear contactless power supply system for moving apparatus,” in Proc. ICEMS, 2011, pp. 1–4.
    [11] J. A. Taylor, N. L. Zhen, J. Casanova, and J. Lin, “A wireless power station for laptop computers,” in Proc. IEEE Radio Wireless Symp., 2010, pp. 625–628.
    [12] H. Matsuki, M. Shiiki, K. Murakami, and T. Yamamoto, “Investigation of coil geometry for transcutaneous energy transmission for artificial heart,” IEEE Trans. Magn., vol. 28, no. 5, pp. 2406–2408, Sep. 1992.
    [13] S. Fumihiro, T. Nomoto, G. Kano, H. Matsuki, and T. Sato, “A new contactless power-signal transmission device for implanted functional electrical stimulation (FES),” IEEE Trans. Magn., vol. 40, no. 4, pp. 2964–2966, Jul. 2004.
    [14] S. Eroglu, G. Friedman, and Richard L. Magin, “Estimate of losses and signal-to-noise ratio in planar inductive micro-coil detectors used for NMR,” IEEE Trans. Magn., vol. 37, no. 4, pp. 2787–2789, Sep. 2002.
    [15] G. R. Nagendra, L. Chen, G. A. Covic, and J. T. Boys, “Detection of EVs on IPT highways,” IEEE J. Emerg. Sel. Topics Circuits Syst., vol. 2, no. 3, pp. 584–597, Feb. 2014.
    [16] C. Fernandez, P. Zumel, A. Lazaro, and A. Barrado, “Analysis of the contact-less power supply for a moving load,” in Proc. IECON’06, 2006, pp. 1987–1992.
    [17] S. -I. Adachi, F. Sato, S. Kikuchi, and H. Matsuki, “Consideration of contactless power station with selective excitation to moving robot,” IEEE Trans. Magn., vol. 35, no. 5, pp. 3583–3585, Sep. 1999.
    [18] J. d. Boeij, E. Lomonova, and J. Duarte, “Contactless planar actuator with manipulator: a motion system without cables and physical contact between the mover and the fixed world,” in Conf. Rec. IEEE IAS Annu. Meeting, 2008, pp. 1–8.
    [19] Y. Zhang, T. Lu, Z. Zhao, F. He, K. Chen, and L. Yuan, ” Selective wireless power transfer to multiple loads using receivers of different resonant frequencies,” IEEE Trans. Power Electron., vol. 30, no. 11, pp. 6001–6005, Nov. 2015.
    [20] S. Choi, J. Huh, W. Y. Lee, S. W. Lee, and C. T. Rim, “New cross-segmented power supply rails for roadway-powered electric vehicles,” IEEE Trans. Power Electron., vol. 28, no. 12, pp. 5832–5841, Dec. 2013.
    [21] H. Y. Shen, J. Y. Lee, and T. W. Chang, ” Study of contactless inductive charging platform with core array structure for portable products,” in Proc. Int. Conf. Consumer Electron., 2011, pp. 756–759.
    [22] M. Budhia, C. Y. Huang, G. A. Covic, and J. T. Boys, “Development of a single-sided flux magnetic coupler for electric vehicle IPT charging systems,” IEEE Trans. Ind. Electron., vol. 60, no. 1, pp. 318–328, Jan. 2013.
    [23] S. Y. R. Hui and W. C. Ho, “A new generation of universal contactless Battery Charging platform for portable Consumer Electronic equipment,” IEEE Trans. Power Electron., vol. 20, no. 3, pp. 620–627, Jul. 2005.
    [24] Y. H. Kim and K. H. Jin, “Design and implementation of a rectangular-type contactless transformer,” IEEE Trans. Ind. Electron., vol. 58, no. 12, pp. 5380–5384, Dec. 2011.
    [25] C. S. Wang, G. A. Covic, and O. H. Stielau, “Power transfer capability and bifurcation phenomena of loosely coupled inductive power transfer systems,” IEEE Trans. Ind. Electron., vol. 51, no. 6, pp. 148–157, Feb. 2004.
    [26] UCC3895 Data Sheet, Texas Instruments Inc., 2013.
    [27] IR2110 Data Sheet, International Rectifier Inc., 2005.
    [28] N. O. Sokal and A. D. Sokal, “Class E-a new class of high-efficiency tuned single-ended switching power amplifiers.” IEEE J. Solid-State Circuits, vol. 10, no. 3, pp. 168–176, Jun. 1975.
    [29] PIC18F4520 Data Sheet, Microchip Technology Inc., 2004.
    [30] 曾百由,微處理器原理與應用組合語言與PIC18微控制器,五南圖書出版公司,台灣,2009年。
    [31] J. Huh, S. W. Lee, W. Y. Lee, G. H. Cho, and C. T. Rim, “Narrow-width inductive power transfer system for online electrical vehicles,” IEEE Trans. Power Electron., vol. 26, no. 12, pp. 3666–3679, Dec. 2011.
    [32] S. Y. Choi, B. W. Gu, S. Y. Jeong, and C. T. Rim, “Advances in wireless power transfer systems for roadway-powered electric vehicles,” IEEE J. Emerg. Sel. Topics Power Electron., vol. 3, no. 1, pp. 2168–6777, Mar. 2015.
    [33] C. Park, S. Lee, S. Y. Jeong, G. H. Cho, and C. T. Rim, “Ultraslim S-type power supply rails for roadway-powered electric vehicles,” IEEE Trans. Power Electron., vol. 30, no. 11, pp. 6446–6455, Nov. 2015.
    [34] S. Y. Choi, S. Y. Jeong, B. W. Gu, G. C. Lim, and C. T. Rim, “Advances in wireless power transfer systems for roadway-powered electric vehicles,” IEEE Trans. Power Electron., vol. 30, no. 11, pp. 6456–6468, Nov. 2015.
    [35] 周瑋潔,自走機器人用非接觸式分段激發感應供電軌道之研究,國立成功大學電機工程學系碩士論文,2007年。
    [36] 陳勝建,非接觸式編織型饋電軌道之研究,國立成功大學電機工程學系碩士論文,2009年。
    [37] 童子原,電動載具用非接觸式感應饋電軌道:高功率交流正弦激勵電源系統之研製,國立成功大學電機工程學系碩士論文,2010年。
    [38] 蘇哲彬,電動載具用非接觸式感應饋電軌道:交錯式編織型陣列區塊耦合系統之研製,國立成功大學電機工程學系碩士論文,2010年。
    [39] 張孟詔,電動載具用非接觸式感應饋電軌道:載具側三埠式充電/供電系統,國立成功大學電機工程學系碩士論文,2010年。
    [40] 張遠帆,具疊圈型感應耦合結構陣列之非接觸式電動車供電軌道,國立成功大學電機工程學系碩士論文,2013年。
    [41] 楊昆翰,非接觸式片狀感應供電軌道系統之研製,國立成功大學電機工程學系碩士論文,2013年。
    [42] 蔡霈裕,多環交疊型無線充電平台之優化設計,國立成功大學電機工程學系碩士論文,2014年。

    下載圖示 校內:2019-07-25公開
    校外:2019-07-25公開
    QR CODE