簡易檢索 / 詳目顯示

研究生: 柯王君奕
Ke, Wang Jun-Yi
論文名稱: 採用全釩氧化還原液流電池及超級電容器於市電併聯型混合再生能源系統之穩定度改善分析
Stability-improvement Analysis of Grid-connected Hybrid Renewable-energy Systems Using a Vanadium Redox Flow Battery and a Supercapacitor
指導教授: 王醴
Wang, Li
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 電機工程學系
Department of Electrical Engineering
論文出版年: 2020
畢業學年度: 108
語文別: 中文
論文頁數: 165
中文關鍵詞: 風場太陽能場混合式儲能全釩氧化還原液流電池超級電容器多機電力系統穩定度功率平滑
外文關鍵詞: Wind farm, photovoltaic farm, hybrid energy-storage system, vanadium redox flow battery, supercapacitor, multi-machine power system, stability, power smoothing
相關次數: 點閱:184下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本文提出以全釩氧化還原液流電池及超級電容器儲能設備所組成之混合式儲能系統,對於併網型混合再生能源系統進行穩定度改善分析。研究系統是由風場與太陽能場所組成的混合再生能源系統連接到IEEE 14匯流排多機電力系統。本論文使用機率方法決定混合式儲能系統之額定功率規格,並設計全釩氧化還原液流電池及超級電容器之容量分配,以有效利用兩個儲能設備的特性,文中也提出了基於混合式儲能系統的控制方案,俾降低全釩氧化還原液流電池的壓力與平滑再生能源的功率波動。在穩態及小信號穩定度研究方面,分別對所研究系統的不同案例進行比較,於動態與暫態研究方面,分析系統在不同擾動條件下的模擬結果,以比較所提出混合式儲能系統對所研究系統在平滑傳輸電力及穩定度改善方面之效果。

    This thesis proposes stability-improvement analysis of grid-connected hybrid renewable-energy systems using a hybrid energy storage system consisting of a vanadium redox flow battery and a supercapacitor energy-storage unit. The studied system is a hybrid wind-PV farm connected to the IEEE 14-bus multi-machine power system. A probability approach is used to determine the rated power specification for the hybrid energy-storage system, while the capacities of the vanadium redox flow battery and supercapacitor are designed to effectivily utilize their characteristics. The control scheme based on a hybrid energy-storage system is proposed to reduce the pressure of the vanadium redox flow battery and smooth output power fluctuations of the renewable-energy systems. For steady-state and small-signal stability studies, different cases of the studied system are compared. Dynamic and transient time-domain simulations subject to different disturbance conditions are also analyzed. The simulation results show that the proposed hybrid energy-storage system can improve stability and power-smoothing performance of the studied system.

    摘要 I SUMMARY II 致謝 IX 目錄 X 表目錄 XIV 圖目錄 XVII 符號說明 XXI 第一章 緒論 1 1-1 研究動機 1 1-2 相關文獻回顧 4 1-3 本論文貢獻 12 1-4 研究內容概述 14 第二章 研究系統之架構與數學模型 16 2-1 前言 16 2-2 風力發電系統 20 2-2-1 風渦輪機之數學模型 20 2-2-2 旋角控制器之數學模型 21 2-2-3 質量-彈簧-阻尼器系統之數學模型 23 2-2-4 永磁同步發電機之數學模型 24 2-2-5 電壓源轉換器之數學模型 27 2-3 太陽能發電系統 29 2-3-1 太陽能電池之數學模型 29 2-3-2 太陽能陣列之數學模型 31 2-3-3 直流對直流升壓轉換器之數學模型 32 2-4 混合式儲能設備模型 35 2-4-1 全釩氧化還原液流電池之數學模型 36 2-4-2 超級電容器之數學模型 41 2-4-3 雙向直流對直流轉換器之數學模型 42 2-5 直流負載轉換器之數學模型 44 2-6 直流對交流電壓源換流器之數學模型 46 2-7 多機系統模型 49 2-7-1 同步發電機及同步調相機之數學模型 50 2-7-2 激磁系統之數學模型 52 2-7-3 渦輪機轉矩與調速機模型 54 2-7-3-1 渦輪機轉矩之數學模型 54 2-7-3-2 調速機之數學模型 55 2-7-4 負載與傳輸線網路之數學模型 56 第三章 混合式儲能系統之參數設計與功率控制方法 59 3-1 前言 59 3-2 混合式儲能系統之額定功率設計 61 3-2-1 核平滑密度估計應用 64 3-2-2 累積密度函數及混合式儲能系統額定功率選擇 66 3-3 混合式儲能設備之容量分配 68 3-3-1 全釩氧化還原液流電池設備之參數設計 69 3-3-2 超級電容器設備之參數設計 72 3-4 混合式儲能系統之功率控制方法 74 第四章 穩態與小訊號穩定度分析 77 4-1 前言 77 4-2 特徵值求得方法 78 4-3 研究系統架構於案例一之系統特徵值結果 81 4-4 研究系統架構於案例二之系統特徵值分析 85 4-5 研究系統架構於案例三之系統特徵值分析 93 4-6 研究系統架構於案例四之系統穩態與特徵值分析 102 4-7 研究系統架構於案例五之系統穩態分析 118 第五章 動態與暫態分析 123 5-1 前言 123 5-2 動態分析 124 5-2-1 模擬風速與模擬日射量之動態分析 124 5-2-2 實際風速與實際日射量之動態分析 130 5-3 系統之暫態分析 138 5-3-1 風場跳脫 138 5-3-2 太陽能場跳脫 143 第六章 結論與未來研究方向 148 6-1 結論 148 6-2 未來研究方向 150 參考文獻 152 附錄:本論文研究系統架構所使用之參數 161

    [1] O. Ellabban, H. Abu-Rub, and F. Blaabjerg, “Renewable energy resources: Current status, future prospects and their enabling technology,” Renewable and sustainable energy reviews, vol. 39, pp. 748-764, Nov. 2014.
    [2] REN21, “Renewables 2017 global status report,” [Online]. Available: http://www.ren21.net/wp-content/uploads/2017/06/17-8399_GSR_20
    17_Full_Report_0621_Opt.pdf, retrieved date: Mar. 1, 2020.
    [3] 經濟部能源局。[Online]. Available: https://www.moeaboe.gov.tw, retrieved date: Mar. 1, 2020.
    [4] 台灣電力公司。[Online]. Available: http://www.taipower.com.tw/tc/
    download.aspx, retrieved date: Mar. 1, 2020.
    [5] Y. Shia, C. Ezea, B. Xiongb, W. Hec, H. Zhangd, T. M. Lime, A. Ukilf, and J. Zhaoa, “Recent development of membrane for vanadium redox flow battery applications: A review,” Applied Energy, vol. 238, pp. 202-224, Mar. 2019.
    [6] X. Luo, J. Wang, M. Dooner, and J. Clarke, “Overview of current development in electrical energy storage technologies and the applications potential in power system operation,” Applied Energy, vol. 137, pp. 511-536, Jan. 2015.
    [7] W. Jing, C. H. Lai, S. H. W. Wong, and M. L. D. Wong, “Battery-supercapacitor hybrid energy storage system in standalone DC microgrids: A review,” IET Renewable Power Generation, vol. 11, no. 4, pp. 461-469, May 2017.
    [8] U. Manandhar, N. R. Tummuru, S. K. Kollimalla, A. Ukil, G. H. Beng, and K. Chaudhari, “Validation of faster joint control strategy for battery- and supercapacitor-based energy storage system,” IEEE Trans. Industrial Electronics, vol. 65, no. 4, pp. 3286-3295, Sep. 2017.
    [9] P. Lin, P. Wang, J. Xiao, J. Wang, C. Jin, and Y. Tang, “An integral droop for transient power allocation and output impedance shaping of hybrid energy storage system in DC microgrid,” IEEE Trans. Power Electronics, vol. 33, no. 7, pp. 6262-6277, Aug. 2017.
    [10] X. Xiaoa, H. Yib, Q. Kang, and J. Nie, “A two-level energy storage system for wind energy systems,” in Proc. 2011 International Conference on Environmental Science and Engineering (ICESE2011), Beijing, China, Apr. 6, 2011, pp. 130-136.
    [11] S. K. Kollimalla, M. K. Mishra, A. Ukil, and H. B. Gooi, “DC grid voltage regulation using new HESS control strategy,” IEEE Trans. Sustainable Energy, vol. 8, no. 2, pp. 772-781, Apr. 2017.
    [12] G. Wang, M. Ciobotaru, and V. G. Agelidis, “Power management for improved dispatch of utility-scale PV plants,” IEEE Trans. Power Systems, vol. 31, no. 3, pp. 2297-2306, Aug. 2015.
    [13] W. Li, G. Joós, and J. Bélanger, “Real-time simulation of a wind turbine generator coupled with a battery supercapacitor energy storage system,” IEEE Trans. Industrial Electronics, vol. 57, no. 4, pp. 1137-1145, Dec. 2009.
    [14] G. Wang, M. Ciobotaru, and V. G. Agelidis, “Power smoothing of large solar PV plant using hybrid energy storage,” IEEE Trans. Power Electronics, vol. 5, no. 3, pp. 834-842, Mar. 2014.
    [15] U. Manandhar, A. Ukil, H. B. Gooi, N. R. Tummuru, S. K Kollimalla, B. Wang, and K. Chaudhari, “Energy management and control for grid connected hybrid energy storage system under different operating modes,” IEEE Trans. Smart Grid, vol. 10, no. 2, pp. 1626-1636, Nov. 2017.
    [16] A. S. Samosir and A. H. M. Yatim, “Implementation of dynamic evolution control of bidirectional DC-DC converter for interfacing ultracapacitor energy storage to fuel-cell system,” IEEE Trans. Industrial Electronics, vol. 57, no. 10, pp. 3468-3473, Feb. 2010.
    [17] K. W. Wee, S. S. Choi, and D. M. Vilathgamuwa, “Design of a least-cost battery-supercapacitor energy storage system for realizing dispatchable wind power,” IEEE Trans. Sustainable Energy, vol. 4, no. 3, pp. 786-796, Mar. 2013.
    [18] A. Hajizadeh, M. A. Golkar, and A. Feliachi, “Voltage control and active power management of hybrid fuel-cell/energy-storage power conversion system under unbalanced voltage sag conditions,” IEEE Trans. Energy Conversion, vol. 25, no. 4, pp. 1195-1208, Nov. 2010.
    [19] C. Tang, J. Wang, Z. Yang, and P. Jin, “Coordinated optimization control strategy for hybrid energy storage system based on real-time online analysis of power spectrum,” in Proc. 2016 2nd International Conference on Control Science and Systems Engineering (ICCSSE), Singapore, Singapore, Jul. 27-29, 2016, pp. 102-105.
    [20] S. Hazra and S. Bhattacharya, “Hybrid energy storage system comprising of battery and ultra-capacitor for smoothing of oscillating wave energy,” in Proc. 2016 IEEE Energy Conversion Congress and Exposition (ECCE), Milwaukee, WI, USA, Sep. 18-22, 2016, pp. 1-8.
    [21] L. Pan, J. Gu, J. Zhu, and T. Qiu, “Integrated control of smoothing power fluctuations and peak shaving in wind/PV/energy storage system,” in Proc. 2016 8th International Conference on Intelligent Human-Machine Systems and Cybernetics (IHMSC), Hangzhou, China, Aug. 27-28, 2016, pp. 586-591.
    [22] H. S. Qazi, N. Liu, and A. Ali, “Power system frequency regulation using hybrid electrical energy storage system,” in Proc. 2018 IEEE 2nd International Electrical and Energy Conference (CIEEC), Beijing, China, Nov. 4-6, 2018, pp. 377-381.
    [23] X. Wang and M. Yue, “Capacity specification for hybrid energy storage system to accommodate fast PV fluctuations,” in Proc. 2015 IEEE Power and Energy Society General Meeting, Milwaukee, Denver, CO, USA, Jul. 26-30, 2015, pp. 1-5.
    [24] W. Chai, X. Cai , and Zheng Li, “A multi-objective optimal control scheme of the hybrid energy storage system for accurate response in the demand side,” in Proc. 2017 4th International Conference on Systems and Informatics (ICSAI), Hangzhou, China, Nov. 11-13, 2017, pp. 300-305.
    [25] F. Wu, P. Ju, X.-P. Zhang, C. Qin, G. J. Peng, H. Huang, and J. Fang, “Modeling, control strategy, and power conditioning for direct-drive wave energy conversion to operate with power grid,” Proceedings of the IEEE, vol. 101, no. 4, pp. 925-941, Apr. 2013.
    [26] S. Heier, Grid Integration of Wind Energy Conversion Systems, Chichester, UK: John Wiley & Son, 1998.
    [27] D. Saidani, O. Hasnaoui, and R. Dhifaoui, “Control of double fed induction generator in WECS,” in Proc. The 2nd International Conference on Power Engineering and Renewable Energy (ICPERE), Bali, Indonesia, Dec. 9-11, 2014, pp. 25-30.
    [28] S. Simani, “Overview of modelling and advanced control strategies for wind turbine systems,” Energies, vol. 8, pp. 13395-13418, Nov. 2015.
    [29] J. Yan, H. Lin, Y. Feng, X. Guo, Y. Huang, and Z. Q. Zhu, “Improved sliding mode model reference adaptive system speed observer for fuzzy control of direct-drive permanent magnet synchronous generator wind power generation system,” IET Renewable Power Generation, vol. 7, no. 1, pp. 28-35, Feb. 2013.
    [30] M. E. Haque, M. Negnevitsky, and K. M. Muttaqi, “A novel control strategy for a variable-speed wind turbine with a permanent-magnet synchronous generator,” IEEE Trans. Industry Applications, vol. 46, no. 1, pp. 331-339, Jan./Feb. 2010.
    [31] M. A. Abdullah, A. H. M. Yatim, and C. W. Tan, “A study of maximum power point tracking algorithms for wind energy system,” in Proc. 2011 IEEE Conference on Clean Energy and Technology, Kuala Lumpur, Malaysia, Jun. 27-29, 2011, pp. 321-326.
    [32] A. Chikh and A. Chandra, “An optimal maximum power point tracking algorithm for PV systems with climatic parameters estimation,” IEEE Trans. Sustainable Energy, vol. 6, no. 2, pp. 644-652, Apr. 2015.
    [33] M. G. Villalva, J. R. Gazoli, and E. R. Filho, “Comprehensive approach to modeling and simulation of photovoltaic arrays,” IEEE Trans. Power Electronics, vol. 24, no. 5, pp. 1198-1208, May 2009.
    [34] W. Janke, “Averaged models of pulse-modulated DC-DC power converters. Part I. Discussion of standard methods,” Archives of Electrical Engineering, vol. 61, no. 4, pp. 609-631, Nov. 2012.
    [35] S. Chiniforoosh, J. Jatskevich, A. Yazdani, V. Sood, V. Dinavahi, J. A. Martinez, and A. Ramirez, “Definitions and applications of dynamic average models for analysis of power systems,” IEEE Trans. Power Delivery, vol. 25, no. 4, pp. 2655-2669, Oct. 2010.
    [36] M. A. Elgendy, B. Zahawi, and D. J. Atkinson, “Assessment of perturb and observe MPPT algorithm implementation techniques for PV pumping applications,” IEEE Trans. Sustainable Energy, vol. 3, no. 1, pp. 21-33, Jan. 2012.
    [37] M. S. Ngan and C. W. Tan, “A study of maximum power point tracking algorithms for stand-alone photovoltaic systems,” in Proc. 2011 IEEE Applied Power Electronics Colloquium (IAPEC), Johor Bahru, Malaysia, Apr. 18-19, 2011, pp. 22-27.
    [38] C. Blanc and A. Rufer, “Multiphysics and energetic modeling of a vanadium redox flow battery,” in Proc. 2008 IEEE International Conference on Sustainable Energy Technologies, Singapore, Singapore, Nov. 24-27, 2008, pp. 696-701.
    [39] J. A. Chahwan, C. Abbey, and G. Joos, “VRB modelling for the study of output terminal voltages, internal losses and performance,” in Proc. 2007 IEEE Canada Electrical Power Conference, Montreal, Quebec, Canada, Oct. 25-26, 2007, pp. 387-392.
    [40] J. A. Chahwan, “Vanadium-redox flow and lithium-ion battery modelling and performance in wind energy applications,” M.S. Thesis, McGill University, Montreal, Quebec, Canada, 2007. Accessed on: Mar. 20, 2020.
    [41] R. D‘Agostino, L. Baumann, A. Damiano, and E. Boggasch, “A vanadium-redox-flow-battery model for evaluation of distributed storage implementation in residential energy systems,” IEEE Trans. Energy Conversion, vol. 30, no. 2, pp. 421-430, Jun. 2015.
    [42] L. Shi and M. L. Crow, “Comparison of ultracapacitor electric circuit models,” in Proc. 2008 IEEE Power and Energy Society General Meeting - Conversion and Delivery of Electrical Energy in the 21st Century, Pittsburgh, PA, USA, Jul. 20-24, 2008, pp. 1-6.
    [43] H.-L. Do, “Nonisolated bidirectional zero-voltage-switching DC-DC converter,” IEEE Trans. Power Electronics, vol. 26, no. 9, pp. 2563-2569, Sep. 2011.
    [44] P. Demetriou, M. Asprou, J. Quiros-Tortos, and E. Kyriakides, “Dynamic IEEE test systems for transient analysis,” IEEE Systems Journal, vol. 11, no. 4, pp. 2108-2117, Jul. 2015.
    [45] N. Hashim, N. Hamzah, M. F. A. Latip, and A. A. Sallehhudin, “Transient stability analysis of the IEEE 14-Bus test system using dynamic computation for power systems (DCPS),” in Proc. 2012 Third International Conference on Intelligent Systems Modelling and Simulation, Kota Kinabalu, Malaysia, Feb. 8-10, 2012, pp. 1-8.
    [46] P. M. Anderson and A. A. Fouad, Power System Control and Stability, Piscataway, NJ, USA: Wiley-IEEE Press, 2003.
    [47] P. W. Sauer and M. A. Pai, Power System Dynamics and Stability, Upper Saddle River, NJ, USA: Prentice-Hall, 1998.
    [48] P. Kundur, Power System Stability and Control, New York, NY, USA: McGraw-Hill, 1994.
    [49] X. Xu, R. M. Mathur, J. Jiang, G. J. Rogers, and P. Kundur, “Modeling of generators and their controls in power system simulations using singular perturbations,” IEEE Trans. Power Systems, vol. 13, no. 1, pp. 109-114, Feb. 1998.
    [50] IEEE, IEEE Recommended Practice for Excitation System Models for Power System Stability Studies, IEEE Standard 421.5-2005, Dec. 2005.
    [51] Y. Liu, S. Yang, S. Zhang, and F. Z. Peng, “Comparison of synchronous condenser and STATCOM for inertial response support,” in Proc. 2014 IEEE Energy Conversion Congress and Exposition (ECCE), Pittsburgh, PA, USA, Sep. 14-18, 2014, pp. 2684-2690.
    [52] Y. Liu, Y. Yu, C. Wang, Z. Zou, C. Jiang, C. Sun, and J. Yu, “Review on synchronous condenser modeling study,” in Proc. 2018 China International Conference on Electricity Distribution (CICED), Tianjin, China, Sep. 17-19, 2018, pp. 1-6.
    [53] W. Li and G. Joos, “Comparison of energy storage system technologies and configurations in a wind farm,” in Proc. 2007 IEEE Power Electronic Specialists Conference, Orlando, FL, USA, Jun. 17-21, 2007, pp. 1280-1285.
    [54] 中央氣象局觀測資料查詢系統。[Online]. Available: https://e-service.cwb.gov.tw/HistoryDataQuery/index.jsp, retrieved date: May. 1, 2020.
    [55] 武光山,採用以超級電容器為基礎之儲能設備於含有市電併聯型混合再生能源系統之性能改善,國立成功大學電機工程學系博士論文,2017年7月。
    [56] 林志昕,整合採用線性永磁發電機與採用感應發電機之波浪場之研究與分析,國立成功大學電機工程學系碩士論文,2010年7月。
    [57] 曾喜彥,採用全釩氧化還原液流電池於市電併聯型混合再生能源發電系統之性能改善,國立成功大學電機工程學系碩士論文,2019年7月。
    [58] 彭賢倫,整合風能、太陽能與波浪能發電系統之直流微電網穩定度分析與研究,國立成功大學電機工程學系碩士論文,2019年7月。
    [59] 吳泓毅,採用超級電容器及飛輪儲能設備於整合風能與太陽能發電系統之穩定度分析研究,國立成功大學電機工程學系碩士論文,2018年7月。

    無法下載圖示 校內:2025-01-01公開
    校外:不公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE