簡易檢索 / 詳目顯示

研究生: 陳忠欽
Chen, Chung-Chin
論文名稱: 添加劑對0.95(Mg0.95Zn0.05)TiO3-0.05CaTiO3陶瓷材料之微波特性影響與應用之研究
Effects of Additions on Microwave Dielectric Properties of 0.95(Mg0.95Zn0.05)TiO3-0.05CaTiO3 Ceramic Materials and Applications at Microwave Frequencies
指導教授: 黃正亮
Huang, Cheng-Liang
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 電機工程學系
Department of Electrical Engineering
論文出版年: 2007
畢業學年度: 95
語文別: 中文
論文頁數: 92
中文關鍵詞: 微波陶瓷
外文關鍵詞: microwave, ceramic
相關次數: 點閱:89下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 探討分別添加燒結促進劑 V2O5、Fe2O3不同含量時,產生的液相對0.95(Mg0.95Zn0.05)TiO3-0.05CaTiO3(往後簡稱95MZCT)介電陶瓷材料微波特性的影響。
    當以V2O5添加可使95MZCT的燒結溫度降低至 1175℃~1275℃,在燒結溫度 1225℃ 持溫4小時, 95MZCT +0.25wt% V2O5 的介電特性為:介電常數 20.76,Qxf 值 125000 GHz (在 9.66 GHz)及τf 值為-10.7ppm/℃。
    當以Fe2O3添加可使95MZCT的燒結溫度降低至1175℃~1275℃,在燒結溫度1225℃持溫4小時,95MZCT +0.25wt% Fe2O3 的介電特性為:介電常數20.73,Qxf 值121920 GHz(在9.669 GHz)及τf 值為-10.1ppm/℃。
    藉由適當的調整(1-X)(Mg0.95Zn0.05)TiO3-XCaTiO3 +0.25 wt% V2O5的 X 值,將可得到趨近於 0 的溫度的飄移係數 。
    而在 x(La1/2Na1/2)TiO3 -(1-x)Ca(Mg1/3Nb2/3)O3 陶瓷系統中,當x= 0.4,可以得到一個 τf ~0 ppm/℃ 的微波介電材料。 0.4(La1/2Na1/2)TiO3-0.6Ca(Mg1/3Nb2/3)O3,以1450℃燒結3小時,其介電特性:介電常數 =52.33、Q×f= 29700 GHz (at 6.0 GHz) 、 τf=2ppm/℃。
      另外,論文以Al2O3、0.93(Mg0.95Zn0.05)TiO3-0.07CaTiO3(93MZCT)-0.25 wt% V2O5為基板,製作設計一使用直連式饋入線耦合雙模態方形環共振器之帶通濾波器,其中心頻率為 2GHz。利用軟體模擬並與實作的結果作特性上之比較。

    By adding different sintering aids V2O5 and Fe2O3 respectively,we study the existence effects of liquid phase for the microwave properties of 0.95(Mg0.95Zn0.05)TiO3-0.05CaTiO3.
    The V2O5 additives lowered the sintering temperature of 0.95(Mg0.95Zn0.05) TiO3-0.05CaTiO3 ceramics to the range 1175℃~1275℃. A dielectric constant of εr ~20.76, a Qxf value of 125000 GHz(at9.66GHz) and a τf value of~-10.7 ppm/℃ was obtained for 0.95(Mg0.95Zn0.05)TiO3-0.05
    CaTiO3+0.25wt% V2O5 ceramics sintered at 1225℃ for 4h.
    The Fe2O3 additives lowered the sintering temperature of 0.95(Mg0.95Zn0.05)TiO3-0.05CaTiO3 ceramics to the range 1175℃~1275℃. A dielectric constant ofεr ~20.73,a Qxf value of 121920 GHz(at 9.669 GHz) and a τf value of~-10.1ppm/℃ was obtained for 0.95(Mg0.95Zn0.05)TiO3 -0.05CaTiO3+0.25wt% Fe2O3 ceramics sintered at 1225℃for 4h.
    By appropriately adjusting the x value in the (1-x)(Mg0.95Zn0.05) TiO3-xCaTiO3+0.25 wt% V2O5 ceramic system, zero value can be obtained.
    x(La1/2Na1/2)TiO3-(1-x)Ca(Mg1/3Nb2/3)O3 solid solution exhibited orthorhombic crystal structures for all compositions. With x=0.4, a new microwave dielectric ceramic material 0.4(La1/2Na1/2)TiO3-0.6 Ca(Mg1/3Nb2/3)O3 is suggested and possesses the dielectric properties of a dielectric constant of 52.33, Q×f value of 29700 GHz (at 6.0GHz) and a value of 2ppm/℃ at 1450℃ for 3h.
    In addition, a bandpass filter using dual-mode square-loop resonator with in-line feed-lines on Al2O3, and 0.93(Mg0.95Zn0.05)TiO3-0.07 CaTiO3+0.25wt% V2O5 substrates have been design. The center frequency is 2GHz. And we compared the result of the simulation with the result of the measurement of the performance.

    第一章 緒論…………………………………………………………… 1 第二章 介電材料原理…………………………………………………4 2-1 介電原理………………………………………………………4 2-2 介電共振器原理………………………………………………11 2-3 燒結理論………………………………………………………13 2-3-1 液相燒結理論……………………………………………14 第三章 微波濾波電路原理……………………………………………16 3-1 微波濾波器之簡介……………………………………………16 3-2 微帶線原理……………………………………………………17 3-2-1 微帶傳輸線介紹…………………………………………17 3-2-2 微帶線傳輸組態…………………………………………17 3-2-3 微帶線各項參數公式計算及考量………………………18 3-3 使用直連式饋入線之 dual-mode帶通方形環濾波器………26 第四章 實驗製程與量測方法………………………………………30 4-1 微波介電材料的製作程序……………………………………30 4-1-1 0.95(Mg0.95Zn0.05)TiO3+0.05CaTiO3+燒結促進劑 (V2O5、Fe2O3)…30 4-1-2 x(La1/2Na1/2)TiO3-(1-x)Ca(Mg1/3Nb2/3)O3系統…………31 4-2 微波介電材料的特性分析與量測……………………………32 4-2-1 X-Ray 分析……………………………………………………32 4-2-2 掃瞄式電子顯微鏡 (SEM) 分析………………………33 4-2-3 密度之量測………………………………………………33 4-2-4 微波特性的量測…………………………………………34 4-3 濾波器之製作與量測……………………………………………41 4-3-1 濾波器的實作………………………………………………41 4-3-2 濾波器的量測………………………………………………41 第五章 實驗結果與討論…………………………………………42 5-1 介電共振器材料分析……………………………………42 5-1-0 0.95(Mg0.95Zn0.05)TiO3-0.05CaTiO3系統未添加燒結促進劑 之特性 ……………………………………………………42 5-1-1 添加 V2O5 對0.95(Mg0.95Zn0.05)TiO3-0.05CaTiO3系統的影響……42 5-1-2 添加 Fe2O3對0.95(Mg0.95Zn0.05)TiO3-0.05CaTiO3系統的影響……45 5-1-3 (1- x)(Mg0.95Zn0.05)TiO3-xCaTiO3系統添加V2O5量測……………47 5-2 x(La1/2Na1/2)TiO3-(1- x)Ca(Mg1/ 3Nb2/3)O3 之系統特性探討…………48 5-3 濾波器特性討論…………………………………………………49 第六章 結論…………………………………………………………51 參考文獻 ……………………………………………………………54

    1. A. Okaya:Proc. IRE, Vol. 48, P.1921, 1960.
    2. H.M. O’Brryan, JR. and J. Thomson, JR.:J. Am. Ceram. Soc. Vol.57, P.450,
    1974.
    3. G. Wolfram and H.E.Gobel:Mat. Res. Bull. Vol.16, P.1455, 1981.
    4. S. Nishgaki, H.Kato, S. Yano and R. Kamamura:Am. Ceram. Soc. Bull, Vol.66, P.1405, 1987.
    5. H. Ouchi and S. Kawashima:Pro. Of the 6th meeting on Ferroelectricity, Kobe, Jpn. J. Appl. Phys., Vol.24, P.60, 1985.
    6. A. G. Cockbain and P. J. Harrop: Br. J. Appl. Phys. 2(1968) 1109.
    7. H. TaKahashi, Y. Baba, K. Ezaki, Y. Okamoto, K. Shibata and S. Nakano : Jpn. J. Appl. Phys 30 (1991)2339.
    8 . H. J. Kim, S. Kucheiko, S. J. Yoon and h. J. Jung: J. Am. Ceram. Soc. 80
    (1997) 1316.
    9 . 吳朗,電子陶瓷-介電,全欣科技圖書,PP.268-275,1994.
    10 . D.K. Cheng, “Field and Wave Electromagnetics, 2/e”, Addison-wesley, 1989.
    11 . V.N. Eremenko, T.V. Naidich and I.Aienko, “Liquid Sintering”,(Consolation New York, 1970, ch4).
    12 . K.S. Hwang, PhD Thesis, Rensselaer Ploytechnic in Troy (1984)
    13 . J.W. Canh and R.B.Heady, J.A.ceram. P.406, 1970.
    14 . W.J. Huppmann and G..Petzow:Sintering Process, Edited by G..C. Kuczynski
    (Plenum Press, New York, PP.189, 1980).
    15 . W.J. Huppmann and G..Petzow, Ber. Bunnsenges Phys. Chem. 82, PP.308
    (1978).
    16 . R.M. German:Liquid phase Sintering, (Plenum Press, New York 1985, ch4).
    17 . J.H. Jean and C.H. Lin:J. Mater. Sci.24, P500, 1989.
    18 . R. L. Geiger, P. E. Allen, and N. R. Strader, VLSI design techniques for ana- log and digital circuits., New York: McGraw-Hill, 1990, pp. 674-685
    19 .L. A. Trinogga, Guo Kaizhou, and I. C. Hunter, Practical microstrip circuit design., UK: Ellis Horwood, 1991.
    20 . K.C.Gupta, R.Garg, I. Bahl, and E.Bhartis, “Microstrip Lines and Slotlines”, Second Edition, Artech House, Boston, 1996.
    21 . E.O. Hammerstard, “Proceedings of the European Microwave Conference”,
    P.268-272, 1975.
    22 . David M.Pozar “Microwave Engineering”, Addison-Wesley, 1998.
    23 . E.J. Denlinger “Losses of microstrip lines” IEEE Trans., MTT-28, June, P.513-522, 1980.
    24 . R.A. Pucel, D.J. Masse, and C.E. Hartwig “Losses in microstrip” IEEE Trans.,
    MIT-16, June, P.342-350, 1968, Correction in IEEE. Trans., MTT-16, Dec.
    1968, P1064.
    25. G. L. Matthaei, L. Young, and E. M. T. Jones, Microwave filters impedance- mattching, networks, and coupling structures., New York: McGraw-Hill, 1980.
    26 .V. Nalbandian, and W. Steenart, “Discontinunity in symmetric striplines due to impedance step and their compensations,” IEEE Trans. Microwave Theory Tech., vol. MTT-20, pp. 573-578, Sep. 1980.
    27 .張盛富,戴明鳳,”無線通信之射頻被動電路設計”,全華出版社,1998.
    28 . T. Edwards, “Foundations for Microstrip Circuit Design, Second Edition”, Wiley, Chichester, U.K., 1991.
    29 . M. Kirschning, R.H. Jansen, and N.H.L.Koster, “Accurate model for open and effect of microstrip lines” Electronics Letters, Vol.17, P.123-125, 1981.
    30 . B.Easter, “The equivalent circuit of some microstrip discontinuities” IEEE
    Trans., MTT-23, P.655-660, 1975.
    31 . J. Li, J. Chen, and Q.Xue,Investigation into Microstrip Dual-mode Banpass Filters (BPFS) With In-Line Feed-line Configurations,Microw Opt Tech Lett 48 (2006), 2008–2013
    32.M. Matsuo, H. Yabuki, and M. Makimoto, “Dual-Mode Stepped-Impedance
    Ring Resonator for Bandpass Filter Applications” IEEE Trans. Microwave
    Theory Tech.,vol. 49,pp.1235-1240, JULY 2001
    33 . W.E. Courtney:IEEE. Trans. MTT, Vol. MTT-8, PP.476-485, 1970.
    34 . D.Kajfez “Computed Modal Field Distribution for Isolated Resonators”. IEEE. Trans. MTT, Vol. MTT-32, pp.1609-1616, 1984.
    35 . D.Kajfez. and P. Guillon “Dielectric Resonators”, 1989.
    36 . Y.Kobayashi and N. Katoh “Microwave Measurement of Resonator Method
    “ IEEE. Trans. MTT, Vol. MTT-33, PP.586-592, 1985.
    37 . O.V.Karpova:Soviet Phys. Vol.1, PP.220, 1959.
    38 . S.H. Cha:IEEE. Trans. MTT, Vol.MTT-33, PP.519, 1985.
    39 . P. Wheless and D. Kajfez “The Use of Higher Resonant Modes in Measuring
    the Dielectric constant of Dielectric Resonators” IEEE. MTT-S, Symposium
    Dig. PP.473-476, 1985.
    40 .B. W. Hakki and P.D. Coleman “A Dielectric Resonator Method of Measuring Inductive Capacities in the Millimeter range” IEEE. Trans. MTT, Vol. MTT-8, PP.402-410, 1960.
    41 . Y.Kobayashi and S. Tanaka “Resonant Modes of a Dielectric Resonator
    Short-Circuited at Both Ends by Parallel Conducting Plates” IEEE. Trans.
    MTT, Vol –28, PP.1077-1085, 1980.
    42 . E.L.Ginztin “Microwave Measurement “ PP . 403-405, 1957.
    43 . T.Higashi and T. Makino “Resonant Frequency Stability of the
    Dielectric Resonator on a Dielectric Substrate” IEEE. Trans MTT, Vol MTT-29, pp.1048-1052, 1981.
    44.劉士生, (Mg0.95Zn0.05)TiO3介電陶瓷之微波特性及其應用 ,國立成功大學電機工程研究所碩士論文九十二年度
    45. C. S. Park, J. H. Paik. S. Nanh, H. J. Lee, H. M. Park and K. Y. Kim: J. Mater.
    Sci. Lett. 18 (1999) 691.

    下載圖示 校內:2012-07-03公開
    校外:2012-07-03公開
    QR CODE