| 研究生: |
陳忠欽 Chen, Chung-Chin |
|---|---|
| 論文名稱: |
添加劑對0.95(Mg0.95Zn0.05)TiO3-0.05CaTiO3陶瓷材料之微波特性影響與應用之研究 Effects of Additions on Microwave Dielectric Properties of 0.95(Mg0.95Zn0.05)TiO3-0.05CaTiO3 Ceramic Materials and Applications at Microwave Frequencies |
| 指導教授: |
黃正亮
Huang, Cheng-Liang |
| 學位類別: |
碩士 Master |
| 系所名稱: |
電機資訊學院 - 電機工程學系 Department of Electrical Engineering |
| 論文出版年: | 2007 |
| 畢業學年度: | 95 |
| 語文別: | 中文 |
| 論文頁數: | 92 |
| 中文關鍵詞: | 微波 、陶瓷 |
| 外文關鍵詞: | microwave, ceramic |
| 相關次數: | 點閱:89 下載:1 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
探討分別添加燒結促進劑 V2O5、Fe2O3不同含量時,產生的液相對0.95(Mg0.95Zn0.05)TiO3-0.05CaTiO3(往後簡稱95MZCT)介電陶瓷材料微波特性的影響。
當以V2O5添加可使95MZCT的燒結溫度降低至 1175℃~1275℃,在燒結溫度 1225℃ 持溫4小時, 95MZCT +0.25wt% V2O5 的介電特性為:介電常數 20.76,Qxf 值 125000 GHz (在 9.66 GHz)及τf 值為-10.7ppm/℃。
當以Fe2O3添加可使95MZCT的燒結溫度降低至1175℃~1275℃,在燒結溫度1225℃持溫4小時,95MZCT +0.25wt% Fe2O3 的介電特性為:介電常數20.73,Qxf 值121920 GHz(在9.669 GHz)及τf 值為-10.1ppm/℃。
藉由適當的調整(1-X)(Mg0.95Zn0.05)TiO3-XCaTiO3 +0.25 wt% V2O5的 X 值,將可得到趨近於 0 的溫度的飄移係數 。
而在 x(La1/2Na1/2)TiO3 -(1-x)Ca(Mg1/3Nb2/3)O3 陶瓷系統中,當x= 0.4,可以得到一個 τf ~0 ppm/℃ 的微波介電材料。 0.4(La1/2Na1/2)TiO3-0.6Ca(Mg1/3Nb2/3)O3,以1450℃燒結3小時,其介電特性:介電常數 =52.33、Q×f= 29700 GHz (at 6.0 GHz) 、 τf=2ppm/℃。
另外,論文以Al2O3、0.93(Mg0.95Zn0.05)TiO3-0.07CaTiO3(93MZCT)-0.25 wt% V2O5為基板,製作設計一使用直連式饋入線耦合雙模態方形環共振器之帶通濾波器,其中心頻率為 2GHz。利用軟體模擬並與實作的結果作特性上之比較。
By adding different sintering aids V2O5 and Fe2O3 respectively,we study the existence effects of liquid phase for the microwave properties of 0.95(Mg0.95Zn0.05)TiO3-0.05CaTiO3.
The V2O5 additives lowered the sintering temperature of 0.95(Mg0.95Zn0.05) TiO3-0.05CaTiO3 ceramics to the range 1175℃~1275℃. A dielectric constant of εr ~20.76, a Qxf value of 125000 GHz(at9.66GHz) and a τf value of~-10.7 ppm/℃ was obtained for 0.95(Mg0.95Zn0.05)TiO3-0.05
CaTiO3+0.25wt% V2O5 ceramics sintered at 1225℃ for 4h.
The Fe2O3 additives lowered the sintering temperature of 0.95(Mg0.95Zn0.05)TiO3-0.05CaTiO3 ceramics to the range 1175℃~1275℃. A dielectric constant ofεr ~20.73,a Qxf value of 121920 GHz(at 9.669 GHz) and a τf value of~-10.1ppm/℃ was obtained for 0.95(Mg0.95Zn0.05)TiO3 -0.05CaTiO3+0.25wt% Fe2O3 ceramics sintered at 1225℃for 4h.
By appropriately adjusting the x value in the (1-x)(Mg0.95Zn0.05) TiO3-xCaTiO3+0.25 wt% V2O5 ceramic system, zero value can be obtained.
x(La1/2Na1/2)TiO3-(1-x)Ca(Mg1/3Nb2/3)O3 solid solution exhibited orthorhombic crystal structures for all compositions. With x=0.4, a new microwave dielectric ceramic material 0.4(La1/2Na1/2)TiO3-0.6 Ca(Mg1/3Nb2/3)O3 is suggested and possesses the dielectric properties of a dielectric constant of 52.33, Q×f value of 29700 GHz (at 6.0GHz) and a value of 2ppm/℃ at 1450℃ for 3h.
In addition, a bandpass filter using dual-mode square-loop resonator with in-line feed-lines on Al2O3, and 0.93(Mg0.95Zn0.05)TiO3-0.07 CaTiO3+0.25wt% V2O5 substrates have been design. The center frequency is 2GHz. And we compared the result of the simulation with the result of the measurement of the performance.
1. A. Okaya:Proc. IRE, Vol. 48, P.1921, 1960.
2. H.M. O’Brryan, JR. and J. Thomson, JR.:J. Am. Ceram. Soc. Vol.57, P.450,
1974.
3. G. Wolfram and H.E.Gobel:Mat. Res. Bull. Vol.16, P.1455, 1981.
4. S. Nishgaki, H.Kato, S. Yano and R. Kamamura:Am. Ceram. Soc. Bull, Vol.66, P.1405, 1987.
5. H. Ouchi and S. Kawashima:Pro. Of the 6th meeting on Ferroelectricity, Kobe, Jpn. J. Appl. Phys., Vol.24, P.60, 1985.
6. A. G. Cockbain and P. J. Harrop: Br. J. Appl. Phys. 2(1968) 1109.
7. H. TaKahashi, Y. Baba, K. Ezaki, Y. Okamoto, K. Shibata and S. Nakano : Jpn. J. Appl. Phys 30 (1991)2339.
8 . H. J. Kim, S. Kucheiko, S. J. Yoon and h. J. Jung: J. Am. Ceram. Soc. 80
(1997) 1316.
9 . 吳朗,電子陶瓷-介電,全欣科技圖書,PP.268-275,1994.
10 . D.K. Cheng, “Field and Wave Electromagnetics, 2/e”, Addison-wesley, 1989.
11 . V.N. Eremenko, T.V. Naidich and I.Aienko, “Liquid Sintering”,(Consolation New York, 1970, ch4).
12 . K.S. Hwang, PhD Thesis, Rensselaer Ploytechnic in Troy (1984)
13 . J.W. Canh and R.B.Heady, J.A.ceram. P.406, 1970.
14 . W.J. Huppmann and G..Petzow:Sintering Process, Edited by G..C. Kuczynski
(Plenum Press, New York, PP.189, 1980).
15 . W.J. Huppmann and G..Petzow, Ber. Bunnsenges Phys. Chem. 82, PP.308
(1978).
16 . R.M. German:Liquid phase Sintering, (Plenum Press, New York 1985, ch4).
17 . J.H. Jean and C.H. Lin:J. Mater. Sci.24, P500, 1989.
18 . R. L. Geiger, P. E. Allen, and N. R. Strader, VLSI design techniques for ana- log and digital circuits., New York: McGraw-Hill, 1990, pp. 674-685
19 .L. A. Trinogga, Guo Kaizhou, and I. C. Hunter, Practical microstrip circuit design., UK: Ellis Horwood, 1991.
20 . K.C.Gupta, R.Garg, I. Bahl, and E.Bhartis, “Microstrip Lines and Slotlines”, Second Edition, Artech House, Boston, 1996.
21 . E.O. Hammerstard, “Proceedings of the European Microwave Conference”,
P.268-272, 1975.
22 . David M.Pozar “Microwave Engineering”, Addison-Wesley, 1998.
23 . E.J. Denlinger “Losses of microstrip lines” IEEE Trans., MTT-28, June, P.513-522, 1980.
24 . R.A. Pucel, D.J. Masse, and C.E. Hartwig “Losses in microstrip” IEEE Trans.,
MIT-16, June, P.342-350, 1968, Correction in IEEE. Trans., MTT-16, Dec.
1968, P1064.
25. G. L. Matthaei, L. Young, and E. M. T. Jones, Microwave filters impedance- mattching, networks, and coupling structures., New York: McGraw-Hill, 1980.
26 .V. Nalbandian, and W. Steenart, “Discontinunity in symmetric striplines due to impedance step and their compensations,” IEEE Trans. Microwave Theory Tech., vol. MTT-20, pp. 573-578, Sep. 1980.
27 .張盛富,戴明鳳,”無線通信之射頻被動電路設計”,全華出版社,1998.
28 . T. Edwards, “Foundations for Microstrip Circuit Design, Second Edition”, Wiley, Chichester, U.K., 1991.
29 . M. Kirschning, R.H. Jansen, and N.H.L.Koster, “Accurate model for open and effect of microstrip lines” Electronics Letters, Vol.17, P.123-125, 1981.
30 . B.Easter, “The equivalent circuit of some microstrip discontinuities” IEEE
Trans., MTT-23, P.655-660, 1975.
31 . J. Li, J. Chen, and Q.Xue,Investigation into Microstrip Dual-mode Banpass Filters (BPFS) With In-Line Feed-line Configurations,Microw Opt Tech Lett 48 (2006), 2008–2013
32.M. Matsuo, H. Yabuki, and M. Makimoto, “Dual-Mode Stepped-Impedance
Ring Resonator for Bandpass Filter Applications” IEEE Trans. Microwave
Theory Tech.,vol. 49,pp.1235-1240, JULY 2001
33 . W.E. Courtney:IEEE. Trans. MTT, Vol. MTT-8, PP.476-485, 1970.
34 . D.Kajfez “Computed Modal Field Distribution for Isolated Resonators”. IEEE. Trans. MTT, Vol. MTT-32, pp.1609-1616, 1984.
35 . D.Kajfez. and P. Guillon “Dielectric Resonators”, 1989.
36 . Y.Kobayashi and N. Katoh “Microwave Measurement of Resonator Method
“ IEEE. Trans. MTT, Vol. MTT-33, PP.586-592, 1985.
37 . O.V.Karpova:Soviet Phys. Vol.1, PP.220, 1959.
38 . S.H. Cha:IEEE. Trans. MTT, Vol.MTT-33, PP.519, 1985.
39 . P. Wheless and D. Kajfez “The Use of Higher Resonant Modes in Measuring
the Dielectric constant of Dielectric Resonators” IEEE. MTT-S, Symposium
Dig. PP.473-476, 1985.
40 .B. W. Hakki and P.D. Coleman “A Dielectric Resonator Method of Measuring Inductive Capacities in the Millimeter range” IEEE. Trans. MTT, Vol. MTT-8, PP.402-410, 1960.
41 . Y.Kobayashi and S. Tanaka “Resonant Modes of a Dielectric Resonator
Short-Circuited at Both Ends by Parallel Conducting Plates” IEEE. Trans.
MTT, Vol –28, PP.1077-1085, 1980.
42 . E.L.Ginztin “Microwave Measurement “ PP . 403-405, 1957.
43 . T.Higashi and T. Makino “Resonant Frequency Stability of the
Dielectric Resonator on a Dielectric Substrate” IEEE. Trans MTT, Vol MTT-29, pp.1048-1052, 1981.
44.劉士生, (Mg0.95Zn0.05)TiO3介電陶瓷之微波特性及其應用 ,國立成功大學電機工程研究所碩士論文九十二年度
45. C. S. Park, J. H. Paik. S. Nanh, H. J. Lee, H. M. Park and K. Y. Kim: J. Mater.
Sci. Lett. 18 (1999) 691.