| 研究生: |
李文昌 Lee, Wen-Chang |
|---|---|
| 論文名稱: |
燒結促進劑對0.34CaTiO3-0.66Ca(Mg1/3Nb2/3)O3介電陶瓷微波特性之影響及其應用 The Effect of Added Sintering Aids on Microwave Dielectric Properties of 0.34CaTiO3-0.66Ca(Mg1/3Nb2/3)O3 Ceramics and Applications |
| 指導教授: |
李炳鈞
Li, Bing-Jin |
| 學位類別: |
碩士 Master |
| 系所名稱: |
電機資訊學院 - 電機工程學系 Department of Electrical Engineering |
| 論文出版年: | 2005 |
| 畢業學年度: | 93 |
| 語文別: | 中文 |
| 論文頁數: | 76 |
| 中文關鍵詞: | 介電陶瓷 、鈣鈦礦 |
| 外文關鍵詞: | dielectric ceramic, perovskite |
| 相關次數: | 點閱:58 下載:3 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
在本論文內將討論0.34CaTiO3-0.66Ca(Mg1/3Nb2/3)O3介電陶瓷材料,藉由分別添加不同燒結促進劑B2O3、CuO、V2O5,探討產生的液相對其微波特性的影響。實驗結果顯示,添加0.25wt%的B2O3可有效降低燒結溫度到1250℃,此時可得介電特性εr~44,Q×f~29700 (7GHz),τf~-1.9 (ppm/oC)。
另外,本論文以FR4、氧化鋁、0.34CaTiO3-0.66Ca(Mg1/3Nb2/3)O3為基板,製作一個堆疊的步階阻抗濾波器,利用電腦軟體模擬與實作的測量值比較,可獲得縮小濾波器的面積與較好的頻率響應結果。
The microwave properties of 0.34CaTiO3-0.66Ca(Mg1/3Nb2/3)O3 dielectric ceramic materials are discussed in this paper. By adding different sintering aids B2O3、CuO and V2O5 respectively, we study the effects of liquid phase for the microwave properties of 0.34CaTiO3-0.66Ca(Mg1/3Nb2/3)O3. The experimental results show that 0.34CaTiO3- 0.66Ca(Mg1/3Nb2/3)O3 with 0.25wt% B2O3 addition can efficiently reduce sintering temperature from 1450 oC to 1250 oC, and the dielectric properties the ceramics are εr~44,Q×f~29700(7GHz) and τf~-1.9(ppm/oC).
In addition, a stacked stepped-impedance resonator filter on R4, Al2O3 and 0.34CaTiO3-0.66Ca(Mg1/3Nb2/3)O3 are fabricated. The experimental measurements demonstrate that the ceramic 0.34CaTiO3-0.66Ca(Mg1/3Nb2/3)O3 with added sintering aids can be used for microwave applications for their superior microwave properties of low loss, smaller device area, high Q*f value and high relative dielectric constant substrate.
參考文獻
[1] A. Okaya: Proc. IRE, Vol. 48, P.1921, 1960
[2] H.M. O’Brryan, JR. and J. Thomson, JR. : J. AM. Ceram. Soc. Vol. 57, P. 450, 1974.
[3] G. Wolfram and H. E. Goble: Mat. Res. Bull. Vol. 16, P1455, 1981.
[4] S. Nishgaki, H.Kato, S. Yano and R. Kamamura: Am. Ceram. Soc. Bull, Vol. 66, P.1405,1987.
[5] H. Ouchi and S.Kawashima: Pro. of the 6th meeting on Ferroelectricity, Kobe, Jpn. J. Appl. Phys., Vol.24, P.60, 1985.
[6] Hiroshi Kagata and Junichi Kato,”Dielectric Properties of Ca-Based Comp-lex Perovskite at Microwave Frequencies,” Jpn. J. Appl. Phys. Vol. 33, P5463,1994.
[7] Cheng-Liang Huang, Hui-Liang Chen, Chen-Cher Wu,” Improved high Q value of CaTiO3–Ca(Mg1/3Nb2/3)O3,” Materials Research Bulletin, Vol. 36, P1645, 2001.
[8] Cheng-Liang Huang, Ru-Yung Yang and Ming-Hung Weng,” Dielectric Properties of CaTiO3–Ca(Mg1_3Nb2_3)O3 Ceramic System Microwave Frequence,” Jpn. J. Appl. Phys. Vol. 39, P6608,2000.
[9] R. C. Kell, A. C. Greenham and G. C. E. Olds, J. Am. Ceram. Soc. 56 (1973) 352.
[10] T. Kakada, S.F. Wang, S.T. Syoshikawa, Jang, R.E. Newnham: J. Am. Ceram. Soc. 77, P1909, (1994).
[11] T. Kakada, S.F. Wang, S.T. Syoshikawa, Jang, R.E. Newnham: J. Am. Ceram. Soc. 77 2485,(1994).
[12] 魏炯權,電子材料工程,全華出版社,2001
[13] 郭展綱,燒結促進劑對0.9CaWO4-0.1Mg2SiO4介電陶瓷之影響與應用,國立成功大學,碩士論文,2004
[14] W. J. Huppmann, and G. Petzow, Sintering processes., New York: Plenum Pr-ess, pp. 189-202, 1979.
[15] V. N. Eremenko, Y. V. Naidich, and I. Aienko, Liquid phase sintering., New York: Consultants Bureau, 1970, ch. 4.
[16] K. S. Hwang, Phd. Thesis, Rensselaer Ploytechnic in Troy(1984).
[17] J. W. Cahn, and R. B. Heady, “Analysis of capillary forces in liquid-phase s-intering of jagged particles,” J. Am. Ceram. Soc., vol. 53, pp. 406-409, Jul. 1970.
[18] W. J. Huppmann, and G. Petzow, Ber. bunnsenges phys. chem., 82, pp. 308, 1978.
[19] R. M. German, Liquid phase sintering., New York: Plenum Press, 1985, ch. 4.
[20] J. H. Jean, and C. H. Lin, “Coarsening of tungsten particles in W-Ni-Fe alloys,” J. Mater. Sci., vol. 24, pp. 500-504, Feb. 1989.
[21] 羅清文,La(Mg1/2Ti1/2)O3 介電陶瓷之微波特性改善及其應用,國立成 功大學,碩士論文,2004
[22] David M. Pozar, Microwave engineering., Reading: Addison-Wesley, 1998, ch.1.
[23] D. Kajfez, “Computed model field distribution for isolated dielectric resonators,” IEEE. Trans. Microwave Theory Tech., vol. MTT-32, pp. 1609-1616, Dec. 1984.
[24] D. Kajfez, “Basic principle give understanding of dielectric waveguides and resonators,” Microwave System News., vol. 13, pp. 152-161, 1983.
[25] D. Kajfez, and P. Guillon, Dielectric resonators., New York: Artech House, 1989.
[26] M. Makimoto S. Yamashita, Microwave Resonators and Filters for Wireless Communication Theory, Design and Application, chap2, Springer, 2000.
[27] M. Makimoto, S. Yamashita, Microwave Resonators and Filters for Wireless Communication Theory, Design and Application, chap4, Springer, 2000.
[28] M. Makimoto and S. Yamashita: IEEE Transactions onMicrowave Theory and Techniques, Vol. MTT-28, No.12 , pp.1413-1417, December 1980.
[29] G. L. Matthaei, L. Young, and E. M. T. Jones, Microwave filters impedance-mattching, networks, and coupling structures., New York: McGraw-Hill, 1980.
[30] V. Nalbandian, and W. Steenart, “Discontinunity in symmetric striplines due to impedance step and their compensations,” IEEE Trans. MicrowaveTheory Tech., vol. MTT-20, pp. 573-578, Sep. 1980.
[31] K. C. Gupta, R. Garg, I. Bahl, and E. Bhartis, Microstrip lines and slotlines, second edition., Boston: Artech House, 1996.
[32] 張盛富,戴明鳳,無線通信之射頻被動電路設計,全華出版社,1998.
[33] J. S. Hong, and M. J. Lancaster, “Couplings of microstrip square open-loop resonators for cross-coupled planar microwave filters,” IEEE Trans. MicrowaveTheory Tech., vol. 44, pp. 2099-2109, Nov. 1996.
[34] T. Edwards, Foundations for microstrip circuit design, second edition., UK: Wiley, 1991.
[35] W. E. Courtney, “Analysis and evaluation of a method of measuring the com-plex permittivity and permeability of microwave insulators,” IEEE. T-rans. Microwave Theory Tech., vol. MTT-18, pp. 476-485, Aug. 1970.
[36] D. Kajfez: IEEE. Trans. Microwave Theory Tech., vol. MTT-32, pp. 1609-1616, Dec. 1984.
[37] D. Kajfez, and P. Guillon, Dielectric resonators., New York: Artech House, 1989.
[38] Y. Kobayashi, and N. Katoh, “Microwave measurement of dielectric properties of low-loss materials by dielectric rod resonator method,” IEEE Tra-ns. Microwave Theory Tech., vol. MTT-33, pp. 586-592, 1985.
[39] O. V. Karpova, Soviet Phys., vol. 1, p. 220, 1959.
[40] S. H. Cha, IEEE. Trans. Microwave Theory Tech., vol. MTT-33, p.519, 1985.
[41] P. Wheless, and D. Kajfez “The use of higher resonant modes in measuring the dialectric constant of Dielectric Resonators,” IEEE MTT-S Symposium Dig.,pp. 473-476, 1985
[42] B. W. Hakki, and P. D. Coleman, “A dielectric resonator method of measure-ng inductive capacities in the millimeter range,” IEEE. Trans. Microwave The-ory Tech., vol. MTT-8, pp. 402-410, 1960
[43] Y. Kobayashi, and S. Tanaka, "Resonant modes of a dielectric resonator short-circuited at both ends by parallel conducting plates," IEEE. Trans. MicrowaveTheory Tech., vol. MTT-28, pp. 1077-1085, 1980
[44] Eric Shih and Jen-Tsai Kuo, “A new compact microstrip stacked-SIR bandpass filter with transmission zeros,” IEEE MTT-S Digest, pp.1077-1080, 2003
[45] Marco Morelli, Ian Hunter, Richard Parry, and Vasil Postoyalko,” Microstrip stepped impedance resonator bandpass filter with an extended optimal rejection bandwidth,” Trans. Microwave Theory Tech., vol. 50, pp. 1657-1664, 2002
[46] Hwack Joo Lee, Hyun Min Park, Yang Koo Cho, Hyun Ryu, and Yong Won Song, ”Microstructural Observations in barium Calcium Magnesium Niobate,” J. Am. Ceram. Soc.83, P2267-2272,2000.
[47] C.-S. PARK, J. H. PAIK, S. NAHM, H.-J. LEE, H-M. PARK, K.-Y. KIM,”Crystal Structure of A2+(Mg1/3Nb2/3)O3, (A2+=Sr2+ and Ca2+)ceramics),” J. OF MATERIALS SCIENCE LETTERS, vol. 18, PP.691-694, 1999