簡易檢索 / 詳目顯示

研究生: 李文昌
Lee, Wen-Chang
論文名稱: 燒結促進劑對0.34CaTiO3-0.66Ca(Mg1/3Nb2/3)O3介電陶瓷微波特性之影響及其應用
The Effect of Added Sintering Aids on Microwave Dielectric Properties of 0.34CaTiO3-0.66Ca(Mg1/3Nb2/3)O3 Ceramics and Applications
指導教授: 李炳鈞
Li, Bing-Jin
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 電機工程學系
Department of Electrical Engineering
論文出版年: 2005
畢業學年度: 93
語文別: 中文
論文頁數: 76
中文關鍵詞: 介電陶瓷鈣鈦礦
外文關鍵詞: dielectric ceramic, perovskite
相關次數: 點閱:58下載:3
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  •   在本論文內將討論0.34CaTiO3-0.66Ca(Mg1/3Nb2/3)O3介電陶瓷材料,藉由分別添加不同燒結促進劑B2O3、CuO、V2O5,探討產生的液相對其微波特性的影響。實驗結果顯示,添加0.25wt%的B2O3可有效降低燒結溫度到1250℃,此時可得介電特性εr~44,Q×f~29700 (7GHz),τf~-1.9 (ppm/oC)。

      另外,本論文以FR4、氧化鋁、0.34CaTiO3-0.66Ca(Mg1/3Nb2/3)O3為基板,製作一個堆疊的步階阻抗濾波器,利用電腦軟體模擬與實作的測量值比較,可獲得縮小濾波器的面積與較好的頻率響應結果。

     The microwave properties of 0.34CaTiO3-0.66Ca(Mg1/3Nb2/3)O3 dielectric ceramic materials are discussed in this paper. By adding different sintering aids B2O3、CuO and V2O5 respectively, we study the effects of liquid phase for the microwave properties of 0.34CaTiO3-0.66Ca(Mg1/3Nb2/3)O3. The experimental results show that 0.34CaTiO3- 0.66Ca(Mg1/3Nb2/3)O3 with 0.25wt% B2O3 addition can efficiently reduce sintering temperature from 1450 oC to 1250 oC, and the dielectric properties the ceramics are εr~44,Q×f~29700(7GHz) and τf~-1.9(ppm/oC).

     In addition, a stacked stepped-impedance resonator filter on R4, Al2O3 and 0.34CaTiO3-0.66Ca(Mg1/3Nb2/3)O3 are fabricated. The experimental measurements demonstrate that the ceramic 0.34CaTiO3-0.66Ca(Mg1/3Nb2/3)O3 with added sintering aids can be used for microwave applications for their superior microwave properties of low loss, smaller device area, high Q*f value and high relative dielectric constant substrate.

    目錄 第一章 緒論 …………………………………………………………………1 1-1 研究動機 …………………………………………………………………1 1-2 文獻探討、其他相關研究之概況 ………………………………………3 1-3 研究目的 …………………………………………………………………4 第二章 原理 …………………………………………………………………5 2-1 介電原理 …………………………………………………………………5 2-2 燒結原理 …………………………………………………………………8 2-3 鈣鈦礦之結構 ……………………………………………………………10 2-3-1 鈣鈦礦之結構 …………………………………………………………10 2-3-2 鈣鈦礦之形成 …………………………………………………………10 2-4 微波濾波器電路理論 ……………………………………………………10 2-4-1 介電共振器原理 ………………………………………………………13 2-4-2 SIR濾波器相關理論 …………………………………………………17 2-6 微帶線的不連續效應 ……………………………………………………21 第三章 實驗程序與量測方法 ………………………………………………24 3-1 起始原料 …………………………………………………………………24 3-2 微波介電材料之製備 ……………………………………………………24 3-2-1 粉末備製 ………………………………………………………………24 3-2-2 陶瓷體備製 ……………………………………………………………24 3-3 特性分析與量測 …………………………………………………………27 3-3-1 相鑑定 …………………………………………………………………27 3-3-2 化學成分分析 …………………………………………………………27 3-3-3 密度之量測 ……………………………………………………………28 3-3-4 微結構分析 ……………………………………………………………28 3-3-5 微波特性之量測 ………………………………………………………28 3-4 濾波器的製作與量測 ……………………………………………………35 3-4-1 濾波器的規格 …………………………………………………………36 3-4-2 濾波器的設計 …………………………………………………………36 3-4-3 濾波器的實作 …………………………………………………………40 3-4-4 濾波器量測 ……………………………………………………………41 第四章 實驗結果與討論 ……………………………………………………42 4-1 (0.34CaTiO3-0.66Ca(Mg1/3Nb2/3)O3)添加燒結促進劑特性探討 42 4-1-1 未添加燒結促進劑之特性 ……………………………………………42 4-1-2 添加燒結促進劑B2O3之影響 …………………………………………43 4-1-3 添加燒結促進劑CuO之影響 …………………………………………52 4-1-4 添加燒結促進劑V2O5之影響 …………………………………………58 4-2 濾波器特性探討 …………………………………………………………64 4-2-1 FR4 基板特性探討 ……………………………………………………65 4-2-2 Al2O3基板特性探討 …………………………………………………66 4-2-3 自製基板特性探討 ……………………………………………………67 第五章 結論 …………………………………………………………………69 第五章 未來發展 ……………………………………………………………71 參考文獻 ………………………………………………………………………72

    參考文獻
    [1] A. Okaya: Proc. IRE, Vol. 48, P.1921, 1960
    [2] H.M. O’Brryan, JR. and J. Thomson, JR. : J. AM. Ceram. Soc. Vol. 57, P. 450, 1974.
    [3] G. Wolfram and H. E. Goble: Mat. Res. Bull. Vol. 16, P1455, 1981.
    [4] S. Nishgaki, H.Kato, S. Yano and R. Kamamura: Am. Ceram. Soc. Bull, Vol. 66, P.1405,1987.
    [5] H. Ouchi and S.Kawashima: Pro. of the 6th meeting on Ferroelectricity, Kobe, Jpn. J. Appl. Phys., Vol.24, P.60, 1985.
    [6] Hiroshi Kagata and Junichi Kato,”Dielectric Properties of Ca-Based Comp-lex Perovskite at Microwave Frequencies,” Jpn. J. Appl. Phys. Vol. 33, P5463,1994.
    [7] Cheng-Liang Huang, Hui-Liang Chen, Chen-Cher Wu,” Improved high Q value of CaTiO3–Ca(Mg1/3Nb2/3)O3,” Materials Research Bulletin, Vol. 36, P1645, 2001.
    [8] Cheng-Liang Huang, Ru-Yung Yang and Ming-Hung Weng,” Dielectric Properties of CaTiO3–Ca(Mg1_3Nb2_3)O3 Ceramic System Microwave Frequence,” Jpn. J. Appl. Phys. Vol. 39, P6608,2000.
    [9] R. C. Kell, A. C. Greenham and G. C. E. Olds, J. Am. Ceram. Soc. 56 (1973) 352.
    [10] T. Kakada, S.F. Wang, S.T. Syoshikawa, Jang, R.E. Newnham: J. Am. Ceram. Soc. 77, P1909, (1994).
    [11] T. Kakada, S.F. Wang, S.T. Syoshikawa, Jang, R.E. Newnham: J. Am. Ceram. Soc. 77 2485,(1994).
    [12] 魏炯權,電子材料工程,全華出版社,2001
    [13] 郭展綱,燒結促進劑對0.9CaWO4-0.1Mg2SiO4介電陶瓷之影響與應用,國立成功大學,碩士論文,2004
    [14] W. J. Huppmann, and G. Petzow, Sintering processes., New York: Plenum Pr-ess, pp. 189-202, 1979.
    [15] V. N. Eremenko, Y. V. Naidich, and I. Aienko, Liquid phase sintering., New York: Consultants Bureau, 1970, ch. 4.
    [16] K. S. Hwang, Phd. Thesis, Rensselaer Ploytechnic in Troy(1984).
    [17] J. W. Cahn, and R. B. Heady, “Analysis of capillary forces in liquid-phase s-intering of jagged particles,” J. Am. Ceram. Soc., vol. 53, pp. 406-409, Jul. 1970.
    [18] W. J. Huppmann, and G. Petzow, Ber. bunnsenges phys. chem., 82, pp. 308, 1978.
    [19] R. M. German, Liquid phase sintering., New York: Plenum Press, 1985, ch. 4.
    [20] J. H. Jean, and C. H. Lin, “Coarsening of tungsten particles in W-Ni-Fe alloys,” J. Mater. Sci., vol. 24, pp. 500-504, Feb. 1989.
    [21] 羅清文,La(Mg1/2Ti1/2)O3 介電陶瓷之微波特性改善及其應用,國立成 功大學,碩士論文,2004
    [22] David M. Pozar, Microwave engineering., Reading: Addison-Wesley, 1998, ch.1.
    [23] D. Kajfez, “Computed model field distribution for isolated dielectric resonators,” IEEE. Trans. Microwave Theory Tech., vol. MTT-32, pp. 1609-1616, Dec. 1984.
    [24] D. Kajfez, “Basic principle give understanding of dielectric waveguides and resonators,” Microwave System News., vol. 13, pp. 152-161, 1983.
    [25] D. Kajfez, and P. Guillon, Dielectric resonators., New York: Artech House, 1989.
    [26] M. Makimoto S. Yamashita, Microwave Resonators and Filters for Wireless Communication Theory, Design and Application, chap2, Springer, 2000.
    [27] M. Makimoto, S. Yamashita, Microwave Resonators and Filters for Wireless Communication Theory, Design and Application, chap4, Springer, 2000.
    [28] M. Makimoto and S. Yamashita: IEEE Transactions onMicrowave Theory and Techniques, Vol. MTT-28, No.12 , pp.1413-1417, December 1980.
    [29] G. L. Matthaei, L. Young, and E. M. T. Jones, Microwave filters impedance-mattching, networks, and coupling structures., New York: McGraw-Hill, 1980.
    [30] V. Nalbandian, and W. Steenart, “Discontinunity in symmetric striplines due to impedance step and their compensations,” IEEE Trans. MicrowaveTheory Tech., vol. MTT-20, pp. 573-578, Sep. 1980.
    [31] K. C. Gupta, R. Garg, I. Bahl, and E. Bhartis, Microstrip lines and slotlines, second edition., Boston: Artech House, 1996.
    [32] 張盛富,戴明鳳,無線通信之射頻被動電路設計,全華出版社,1998.
    [33] J. S. Hong, and M. J. Lancaster, “Couplings of microstrip square open-loop resonators for cross-coupled planar microwave filters,” IEEE Trans. MicrowaveTheory Tech., vol. 44, pp. 2099-2109, Nov. 1996.
    [34] T. Edwards, Foundations for microstrip circuit design, second edition., UK: Wiley, 1991.
    [35] W. E. Courtney, “Analysis and evaluation of a method of measuring the com-plex permittivity and permeability of microwave insulators,” IEEE. T-rans. Microwave Theory Tech., vol. MTT-18, pp. 476-485, Aug. 1970.
    [36] D. Kajfez: IEEE. Trans. Microwave Theory Tech., vol. MTT-32, pp. 1609-1616, Dec. 1984.
    [37] D. Kajfez, and P. Guillon, Dielectric resonators., New York: Artech House, 1989.
    [38] Y. Kobayashi, and N. Katoh, “Microwave measurement of dielectric properties of low-loss materials by dielectric rod resonator method,” IEEE Tra-ns. Microwave Theory Tech., vol. MTT-33, pp. 586-592, 1985.
    [39] O. V. Karpova, Soviet Phys., vol. 1, p. 220, 1959.
    [40] S. H. Cha, IEEE. Trans. Microwave Theory Tech., vol. MTT-33, p.519, 1985.
    [41] P. Wheless, and D. Kajfez “The use of higher resonant modes in measuring the dialectric constant of Dielectric Resonators,” IEEE MTT-S Symposium Dig.,pp. 473-476, 1985
    [42] B. W. Hakki, and P. D. Coleman, “A dielectric resonator method of measure-ng inductive capacities in the millimeter range,” IEEE. Trans. Microwave The-ory Tech., vol. MTT-8, pp. 402-410, 1960
    [43] Y. Kobayashi, and S. Tanaka, "Resonant modes of a dielectric resonator short-circuited at both ends by parallel conducting plates," IEEE. Trans. MicrowaveTheory Tech., vol. MTT-28, pp. 1077-1085, 1980
    [44] Eric Shih and Jen-Tsai Kuo, “A new compact microstrip stacked-SIR bandpass filter with transmission zeros,” IEEE MTT-S Digest, pp.1077-1080, 2003
    [45] Marco Morelli, Ian Hunter, Richard Parry, and Vasil Postoyalko,” Microstrip stepped impedance resonator bandpass filter with an extended optimal rejection bandwidth,” Trans. Microwave Theory Tech., vol. 50, pp. 1657-1664, 2002
    [46] Hwack Joo Lee, Hyun Min Park, Yang Koo Cho, Hyun Ryu, and Yong Won Song, ”Microstructural Observations in barium Calcium Magnesium Niobate,” J. Am. Ceram. Soc.83, P2267-2272,2000.
    [47] C.-S. PARK, J. H. PAIK, S. NAHM, H.-J. LEE, H-M. PARK, K.-Y. KIM,”Crystal Structure of A2+(Mg1/3Nb2/3)O3, (A2+=Sr2+ and Ca2+)ceramics),” J. OF MATERIALS SCIENCE LETTERS, vol. 18, PP.691-694, 1999

    下載圖示 校內:2006-06-29公開
    校外:2006-06-29公開
    QR CODE