簡易檢索 / 詳目顯示

研究生: 黃寶萱
Huang, Pao-Hsuan
論文名稱: 應用分布水文-土壤-植被模式探討氣候變遷對水文量之影響
Application of Distributed Hydrology-Soil-Vegetation Model in Investigating the Impact of Climate Change on Hydrology
指導教授: 游保杉
Yu, Pao-Shan
學位類別: 碩士
Master
系所名稱: 工學院 - 水利及海洋工程學系
Department of Hydraulic & Ocean Engineering
論文出版年: 2017
畢業學年度: 105
語文別: 中文
論文頁數: 68
中文關鍵詞: 氣候變遷分布水文-土壤-植被模式蒸發散量逕流量
外文關鍵詞: Climate change, Distributed Hydrology-Soil-Vegetation Model(DHSVM), Evapotranspiration, Runoff
相關次數: 點閱:181下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 在氣候變遷影響下,水文循環的改變造成水資源等相關問題,而台灣地勢陡峻及豐枯季節分明,屬於高風險地區,因此有必要進行相關之研究,以因應氣候變遷可能造成台灣水環境之衝擊。然而,水文循環中除了降雨量以外,如蒸發量、逕流量、入滲量也會隨之產生變化,因此,本文目的為探討氣候變遷對水文量之影響。
    本研究採用IPCC(Intergovernmental Panel on Climate Change)所提出之RCP4.5及RCP8.5情境,並考慮情境下系集平均結果,以氣象繁衍模式模擬近未來(2021至2040年)的溫度及雨量序列,作為後續水文模式之輸入值,模擬未來可能情境之水文量。此外,水文模式參數眾多,因此進行模式預測前,運用非支配排序遺傳演算法進行模式率定。
    研究結果指出:於RCP4.5及RCP8.5情境下,未來降雨量與逕流量在豐水期間(尤其是6至10月)相對於基期皆有增加的趨勢,在枯水期期間(尤其是12月至4月)皆有減少之趨勢,豐水期的變異皆較枯水期來的大,且流量於梅雨季(5至6月)有減少之情形,表示未來枯水期間將會延長。蒸發散量方面,於兩種情境下,受溫度之影響,各月份蒸發散量皆有增加之情形,此結果顯示未來在總降雨量變化幅度不大的情形下,可能造成可用水的減少。

    The purpose of this paper is to address the impact of climate change on the hydrology cycle. A number of hydrological variables including rainfall, runoff and evapotranspiration were analyzed. This study selected the RCP4.5 and RCP8.5 scenarios in Intergovernmental Panel on Climate Change’s (IPCC’s) fifth assessment report (AR5) as the setting of climate change scenarios. Firstly, a weather generator was applied to synthesize scenario temperature and rainfall data for the future period of 2021 to 2040 based on the downscaling information of multi-model ensembles under RCP4.5 and RCP8.5 scenarios. Then, the non-dominated sorting genetic algorithm was applied to find the parameters of distributed hydrology-soil-vegetation model (DHSVM) and the synthesized data were input to the calibrated DHSVM for the hydrological modelling. The simulation results of DHSVM show that there is an increase in scenario rainfall and runoff during the wet seasons (especially from June to October) but a decrease during the dry seasons (especially from December to April) under RCP4.5 and RCP8.5 scenarios. During the mei-yu seasons (May to June), there is a decrease in scenario runoff and the dry season drought events may last longer due to the less runoff. In terms of annual rainfall, there is no significant difference between the baseline period of 1986 to 2005 and the future period. There is an increase in scenario evapotranspiration rates for each month due to the rising temperature. Overall, the less available water is expected based on the results of hydrological modelling.

    摘要I EXTENDED ABSTRACTII 誌謝VII 目錄VIII 表目錄X 圖目錄XI 第一章 緒論1 1-1 研究動機與目的1 1-2 文獻回顧3 1-2-1 氣候變遷3 1-2-2 分布水文-土壤-植被模式4 1-3 論文架構6 第二章 研究區域與資料概述7 2-1 區域概述7 2-2 氣象資料收集8 第三章 研究方法10 3-1 DHSVM水文模式10 3-1-1 模式介紹10 3-1-2 模式輸入資料24 3-2 遺傳演算法28 3-2-1 傳統遺傳演算法28 3-2-2 多目標遺傳演算法30 3-2-3 參數擬定35 3-2-4 目標函數之擬定35 3-3 氣候變遷36 3-3-1 氣候變遷情境說明36 3-3-2 氣候變遷情境設定37 3-4 氣象繁衍模式41 3-4-1 模式理論介紹41 3-4-2 氣象繁衍模式之評鑑42 第四章 結果與討論44 4-1 水文模式之率定與驗證44 4-2 結果分析比較51 4-2-1 氣象繁衍結果51 4-2-2 蒸發散量模擬情形56 4-2-3 流量模擬情形59 第五章 結論與建議62 5-1 結論62 5-2 建議63 參考文獻64

    1.王士銘,2014,利用有限氣象參數評估蒸發散量之研究,國立成功大學資源工程學系碩士論文。
    2.吳志剛,2000,「氣候變遷對高屏溪流域水資源衝擊之探討」,國立成功大學水利及海洋工程學系碩士論文。
    3.吳明進,2002,「區域氣候變遷模擬系統之整合與應用子計畫六:全球氣候變遷對台灣區域氣候與水資源衝擊之評析(I)」,國立台灣大學大氣科學系。國立成功大學水利及海洋工程學系碩士論文。
    4.林子平,2015,「土地與氣候變遷情境對流量之影響-以大屯溪流域為例」,國立成功大學水利及海洋工程學系碩士論文。
    5.林憲德,2012,「建築基地保水設計技術規範」,內政部營建署。
    6.郝振純、梁之豪、梁麗喬、郭曉玉、鞠琴。2012年,「DHSVM模型在寶庫河流域的逕流模擬適用性分析」,水電能源科學第30卷第11期,9-12。
    7.康麗莉、王守榮、顧駿強,2008,「分布式水文模型DHSVM對蘭江流域逕流變化的模擬試驗」,熱帶氣象學報第24卷第2期,176-182。
    8.鄒克萬、黃書偉,2007,「都市土地利用變遷對自然環境衝擊之空間影響分析」,地理學報第四十八期,1-18。
    9.蔡宏欣,2008,「氣候變遷對石門水庫集水區的水文衝擊」,國立成功大學水利及海洋工程學系碩士論文。
    10.鄭祈全、吳治達、莊永忠,2007,「土地利用變遷與氣候變遷對集水區流量模擬影響之研究-以林試所蓮華池試驗林之蛟龍溪集水區為例」,臺灣林業科學第22卷第4期,483-495。
    11.戴巧雯,2014,「多目標遺傳演算法應用於滯洪池最佳化優選」,國立成功大學水利及海洋工程學系碩士論文。
    12.謝宜桀,2015,「應用分布型-水文-土壤-植被模式探討土地利用變遷對水文量之影響」,國立成功大學水利及海洋工程學系碩士論文。
    13.Bowling, L. C., Lettenmaier, D. P. (2001). “The effects of forest roads and harvest on catchment hydrology in a mountainous maritime environment”, Land use and watersheds: Human influence on hydrology and geomorphology in urban and forest areas, 145-164.
    14.Chu, H. J., Lin, Y. P., Huang, C. W., Hsu, C. Y., Chen, H. Y. (2010). “Modelling the hydrologic effects of dynamic land‐use change using a distributed hydrologic model and a spatial land‐use allocation model”, Hydrological processes, 24(18), 2538-2554.
    15.Confesor RB, Whittaker GW. (2007). “Automatic calibration of hydrologic models with multi-objective evolutionary algorithm and pareto optimization”, Journal of the American Water Resources Association, 43(4): 981–989.
    16.Coutu, G. W., Vega, C. (2007). “Impacts of landuse changes on runoff generation in the east branch of the Brandywine Creek watershed using a GIS-based hydrologic model”, Middle States Geogr, 40, 142-149.
    17.Cuo, L., Beyene, T. K., Voisin, N., Su, F., Lettenmaier, D. P., Alberti, M., Richey, J. E. (2011). “Effects of mid‐twenty‐first century climate and land cover change on the hydrology of the Puget Sound basin, Washington”, Hydrological Processes, 25(11), 1729-1753.
    18.Cuo, L., Giambelluca, T. W., Ziegler, A. D. (2011). “Lumped parameter sensitivity analysis of a distributed hydrological model within tropical and temperate catchments”, Hydrological Processes, 25(15), 2405-2421.
    19.Cuo, L., Lettenmaier, D. P., Mattheussen, B. V., Storck, P., Wiley, M. (2008). “Hydrologic prediction for urban watersheds with the Distributed Hydrology–Soil–Vegetation Model”, Hydrological Processes, 22(21), 4205-4213.
    20.Deb, K., Pratap, A., Agarwal, S., and Meyarivan, T., (2002) “A fast and elitist multiobjective genetic algorithm: NSGA-II”, IEE Transactions on Evolutionary Computation, 6(2), 182-197
    21.Dickerson, Susan E. (2010). “Modeling the effects of climate change forecasts on streamflow in the Nooksack River Basin”, Hydrological Processes, vol. 28, issue 20, 5236-5250.
    22.Dickinson, R. E., Henderson-Sellers, A., Rosenzweig, C., Sellers, P. J. (1991). “Evapotranspiration models with canopy resistance for use in climate models, a etreview”, Agricultural and Forest Meteorology, 54(2), 373-388.
    23.Doten, C. O., Bowling, L. C., Lanini, J. S., Maurer, E. P., Lettenmaier, D. P. (2006). “A spatially distributed model for the dynamic prediction of sediment erosion and transport in mountainous forested watersheds”, Water Resources Research, 42(4), W04417.
    24.Grefenstette, J.J. (1986). “Optimization of control parameters for genetic algorithms” IEEE Trans. Syst., Man, Cybern., 6(1):122-128.
    25.Jensen, M. E., Burman, R. D., Allen, R. G. (1990). “Evapotranspiration and irrigation water requirements”, American Society of Civil Engineers, New York.
    26.Leung, L.R., M.S. Wigmosta, S.J. Ghan, D.J. Epstein, and L.W. Vail. (1996).”Application of a subgrid orographic precipitation/surface hydrology scheme to a mountain watershed”, Journal of Geophysical Research, 101 (D8), 12,803-12,817.
    27.Meyer, P. D., Rockhold, M. L., Gee, G. W. (1997). “Uncertainty analyses of infiltration and subsurface flow and transport for SDMP sites”, Nuclear Regulatory Commission, Washington, DC (United States). Div. of Regulatory Applications; Pacific Northwest National Lab., Richland, WA (United States), No. NUREG/CR-6565; PNNL-11705.
    28.Mohammed, I.N., Bomblies, A., Wemple, B.C.,(2015).”The use of CMIP5 data to simulate climate change impacts on flow regime within the Lake Champlain Basin”, Journal of Hydrology: Regional Studies, vol. 3,160-186.
    29.Schulze, R.E., Kiker, G.A. and Kunz, R.P. (1993) “Global climate change and agricultural productivity in southern Africa”, Global Environmental Change 3, 330-49.
    30.Storck, P., Bowling, L., Wetherbee, P., Lettenmaier, D. (1998). “Application of a GIS‐based distributed hydrology model for prediction of forest harvest effects on peak stream flow in the Pacific Northwest”, Hydrological Processes, 12(6), 889-904.
    31.Sun, N., Yearsley, J., Voisin, N., Lettenmaier, D. P. (2015). “A spatially distributed model for the assessment of land use impacts on stream temperature in small urban watersheds”, Hydrological Processes, 29(10), 2331-2345.
    32.Thyer, M., Beckers, J., Spittlehouse, D., Alila, Y., Winkler, R. (2004). “Diagnosing a distributed hydrologic model for two high‐elevation forested catchments based on detailed stand‐and basin‐scale data”, Water Resources Research, 40(1), W01103.
    33.Tung CP, Haith DA. (1995) “Global warming effects on New York streamflows”, J Water Resource Plan Manage,121(2):216-25.
    34.VanShar, J. R., Haddeland, I., Lettenmaier, D. P. (2002). “Effects of land‐cover changes on the hydrological response of interior Columbia River basin forested catchments”, Hydrological Processes, 16(13), 2499-2520.
    35.Whitaker, A., Alila, Y., Beckers, J., Toews, D. (2003). “Application of the distributed hydrology soil vegetation model to Redfish Creek, British Columbia: model evaluation using internal catchment data”, Hydrological Processes, 17(2), 199-224.
    36.Wigmosta, M. S., Perkins, W. A. (2001). “Simulating the effects of forest roads on watershed hydrology”, Land use and watersheds: human influence on hydrology and geomorphology in urban and forest areas, 127-143.
    37.Wigmosta, M. S., Vail, L. W., Lettenmaier, D. P. (1994). “A distributed hydrology‐vegetation model for complex terrain”, Water Resources Research, 30(6), 1665-1679.
    38.Yao C, Yang Z. (2009) “Parameters optimization on DHSVM model based on a genetic algorithm”. Frontiers of Earth Science in China, 3: 374-380

    無法下載圖示 校內:2022-08-01公開
    校外:不公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE