簡易檢索 / 詳目顯示

研究生: 陳建燁
Chen, Jian-Yeh
論文名稱: 經電化學成長與熱退火後製備之高品質多孔氧化鋅薄膜之壓電與電性質研究
Piezoelectrical and electrical properties of High-quality porous ZnO thin film prepared by Electrochemical growth followed by thermal annealing
指導教授: 劉全璞
Liu, Chuan-Pu
學位類別: 碩士
Master
系所名稱: 工學院 - 材料科學及工程學系
Department of Materials Science and Engineering
論文出版年: 2025
畢業學年度: 113
語文別: 中文
論文頁數: 141
中文關鍵詞: 電化學沉積多孔氧化鋅薄膜奈米發電機
外文關鍵詞: PENG, Porous ZnO thin film, Electrochemical deposition
相關次數: 點閱:11下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究採用電化學沉積法(Electrochemical Deposition, ECD)於導電玻璃基板上製備氧化鋅(ZnO)薄膜,並透過後續熱退火處理以提升其結晶品質與誘導孔洞結構,進一步探討其對微觀結構、光學特性及壓電性能之影響。退火過程分別採用氬氣(Ar)與氫氣(H₂)作為氣氛控制參數,前者在500 °C、0.5 torr條件下進行3、6、9、12與15小時退火;後者則在300 °C、0.5 torr條件下進行15、30與45分鐘的短時處理,以系統性比較氣氛與時間對氧化鋅薄膜結構調控之差異性。
    結構與形貌分析部分,透過掃描式電子顯微鏡(Scanning Electron Microscopy, SEM)觀察到退火後樣品表面明顯形成孔洞結構,其數量與孔徑隨退火時間延長而顯著增加,惟超過一定時間後孔洞密度反而略有下降。X光繞射(X-ray Diffraction, XRD)分析顯示薄膜主要沿 c 軸(002)方向成長,並隨退火條件改善,峰強度增加、半高寬(FWHM)縮小,且峰位產生偏移,顯示晶格應力與晶粒尺寸的變化。拉曼光譜(Raman Spectroscopy)進一步驗證晶體品質與缺陷密度之變化;而紫外-可見光吸收光譜(UV-Vis)與光激發螢光(Photoluminescence, PL)結果則顯示,退火可調變能隙大小與缺陷相關能階。原子力顯微鏡(Atomic Force Microscopy, AFM)則提供表面粗糙度與孔洞分布之量化資訊。
    本研究進一步將氧化鋅多孔薄膜應用於壓電奈米發電機(Piezoelectric Nanogenerator, PENG)元件之製備,並在不同外加力(10、20、30、50 N)下量測其電流響應。結果顯示,相較於未退火或未具孔洞結構之樣品,經氬氣或氫氣退火後之多孔薄膜顯著提升其壓電輸出,最大輸出電流可達原始樣品之數十倍,顯示孔洞結構有助於應力集中與壓電效應強化。
    綜合而言,本研究建立一套結合電化學成長與氣氛退火調控之多孔氧化鋅薄膜製備流程,並證實其於壓電能源採集領域具潛在應用價值。相關分析亦提供深入理解氧化鋅薄膜微觀結構與功能性質間之關聯性,為未來高性能奈米能源裝置材料之設計與優化提供參考依據。

    In this study, porous ZnO thin films were fabricated via electrochemical deposition followed by annealing in argon or hydrogen atmospheres. The pore formation mechanisms and their influence on piezoelectric properties were systematically explored. Argon annealing induced pores through gradual grain reorganization and stress relaxation, requiring longer durations but yielding uniform porosity that enhances piezoelectric output. In contrast, hydrogen annealing promoted rapid pore formation via defect generation and gas volatilization, with simultaneous defect passivation (e.g., VOH complex formation), albeit with less uniform pore distribution. The results highlight that optimized porosity can enhance piezoelectric performance, but excessive or poorly distributed pores may hinder it. This work provides insights into tuning ZnO porosity and defects through atmospheric control for improved energy harvesting applications.

    摘要 I Extended Abstract III Summary III Introduction III Experimental IV Result and Discussion VI 誌謝 XVI 目錄 XVII 表目錄 XX 圖目錄 XXI Chapter 1. 緒論 1 1.1 前言 1 1.2 研究動機與目的 2 Chapter 2. 文獻回顧 4 2.1 氧化鋅 4 2.1.1 基本特性 4 2.1.2 晶體結構 5 2.1.3 氧化鋅合成法 7 2.2 電化學沉積(Electrochemistry deposition) 18 2.2.1 電化學沉積原理 18 2.2.2 電流-電壓曲線 20 2.2.3 不同電化學沉積參數對氧化鋅薄膜之影響 21 2.2.4 氧化鋅薄膜成長機制 32 2.3 孔洞氧化鋅(porous ZnO) 34 2.4 壓電性質 38 2.4.1 壓電效應 38 2.4.2 壓電係數 42 2.4.3 壓電奈米發電機的材料 44 2.4.4 工作原理 45 2.4.5 摩擦起電效應對 PENG 輸出量測造成的非理想干擾 48 2.5 孔洞壓電奈米發電機 51 2.6 孔洞氧化鋅壓電奈米發電機 56 2.6.1 孔洞氧化鋅奈米線 56 2.6.2 孔洞氧化鋅薄膜 57 Chapter 3. 實驗步驟和研究方法 58 3.1 實驗流程 58 3.1.1 實驗儀器與藥品 59 3.1.2 實驗步驟 61 3.2 材料分析儀器 65 3.2.1 表面形貌分析-掃描式電子顯微鏡(SEM)&能量散佈光譜儀(EDS) 65 3.2.2 X-ray 繞射 (XRD) 66 3.2.3 光激螢光光譜 Photoluminescence 68 3.2.4 紫外線/可見光分光光譜儀 Ultraviolet–Visible Spectroscopy 68 3.2.5 X 光光電子能譜儀(X-Ray Photoelectron Spectrometer, XPS) 69 3.2.6 奈米壓痕機械性質分析儀(Nanoindenter) 69 3.2.7 原子力顯微鏡(AFM) 71 3.2.8 壓電奈米發電機(PENG)量測 71 Chapter 4. 結果與討論 73 4.1 材料特性 73 4.1.1 SEM 73 4.1.2 XRD 76 4.1.3 PL 82 4.1.4 UV-VIS 85 4.1.5 XPS 88 4.1.6 機械性質 92 4.2 電性量測 95 4.2.1 PFM 95 4.2.2 Voltage–Time Curve 96 4.2.3 Current–Time Curve 100 4.2.4 孔洞對壓電的提升機制 103 Chapter 5. 結論 105 Chapter 6. Future work 107 Chapter 7. 參考文獻 108

    1. 林文台、江敏弘、游智凱、張孟邦、何政穎, 多孔性氧化鋅奈米線及氧化鋅鍺奈米線之生長及光學性質. 2009.
    2. Krauter, M., et al., Tuning the Porosity of Piezoelectric Zinc Oxide Thin Films Obtained from Molecular Layer-Deposited "Zincones". Materials (Basel), 2022. 15(19).
    3. Lee, P.-C., et al., Development of porous ZnO thin films for enhancing piezoelectric nanogenerators and force sensors. Nano Energy, 2021. 82.
    4. Su, Y.-L., et al., Gigantic enhancement of electricity generation in piezoelectric semiconductors by creating pores as a universal approach. Energy & Environmental Science, 2019. 12(1): p. 410-417.
    5. Sato, Y., T. Yamamoto, and Y. Ikuhara, Atomic Structures and Electrical Properties of ZnO Grain Boundaries. Journal of the American Ceramic Society, 2007. 90(2): p. 337-357.
    6. Klingshirn, C., ZnO: From basics towards applications. physica status solidi (b), 2007. 244(9): p. 3027-3073.
    7. Ü. Özgür, Y.I.A., C. Liu, A. Teke, M. A. Reshchikov, S. Doğan, V. Avrutin, and a.H.M. S.-J. Cho, A comprehensive review of ZnO materials and devices. 2005.
    8. Lifen Xu, Y.G., Qing Liao, Jianping Zhang, and Dongsheng Xu,, Morphological control of ZnO nanostructures by electrodeposition. 2005.
    9. Wang, Z.L., Nanostructures of zinc oxide. 2001.
    10. Wang, Z.L., Zinc oxide nanostructures: growth, properties and applications. Journal of Physics: Condensed Matter, 2004. 16(25): p. R829-R858.
    11. Abdulkahliq A. Sulaiman , G.G.A., Ahmed Izzalddin Thanon Synthesis and Study of ZnO Thin Films Using CVD Technique For Waveguide Sensor Applications. 2021.
    12. Ismail, A. and M.J. Abdullah, The structural and optical properties of ZnO thin films prepared at different RF sputtering power. Journal of King Saud University - Science, 2013. 25(3): p. 209-215.
    13. Polsongkram, D., et al., Effect of synthesis conditions on the growth of ZnO nanorods via hydrothermal method. Physica B: Condensed Matter, 2008. 403(19-20): p. 3713-3717.
    14. Bingqiang Cao, W.C., Haibo Zeng, and Guotao Duan, Morphology evolution and photoluminescence properties of ZnO films electrochemically deposited on conductive glass substrates. 2005.
    15. Yoshida, T., et al., Mechanism of cathodic electrodeposition of zinc oxide thin films from aqueous zinc nitrate baths. Thin Solid Films, 2004. 451-452: p. 166-169.
    16. Boda, M.A., et al., Facile synthesis of hybrid ZnO nanostructures by combined electrodeposition and chemical bath deposition for improved performance of dye-sensitized solar cell. Materials Letters, 2019. 248: p. 143-145.
    17. Haibao, Z., et al., Preparation and optical properties of Au nanoparticle “Sandwich” structure (AuNPs/ZNNs/AuNPs) substrate based on ZnO nanosheets template. Materials Chemistry and Physics, 2021. 268.
    18. Izaki, M. and T. Omi, Transparent zinc oxide films prepared by electrochemical reaction. Applied Physics Letters, 1996. 68(17): p. 2439-2440.
    19. Salazar, R., C. Lévy-Clément, and V. Ivanova, Galvanostatic deposition of ZnO thin films. Electrochimica Acta, 2012. 78: p. 547-556.
    20. Xu, F., et al., Seed layer-free electrodeposition of well-aligned ZnO submicron rod arrays via a simple aqueous electrolyte. Materials Research Bulletin, 2009. 44(8): p. 1700-1708.
    21. Yang, J., et al., Synthesis of ZnO nanosheets via electrodeposition method and their optical properties, growth mechanism. Optical Materials, 2015. 46: p. 179-185.
    22. Guo, M., et al., Effects of preparing conditions on the electrodeposition of well-aligned ZnO nanorod arrays. Electrochimica Acta, 2008. 53(14): p. 4633-4641.
    23. Lupan, O., et al., Effects of annealing on properties of ZnO thin films prepared by electrochemical deposition in chloride medium. Applied Surface Science, 2010. 256(6): p. 1895-1907.
    24. Huo, L., et al., Smart washer—a piezoceramic-based transducer to monitor looseness of bolted connection. Smart Materials and Structures, 2017. 26(2).
    25. Wang, Z.L., Progress in piezotronics and piezo-phototronics. Adv Mater, 2012. 24(34): p. 4632-46.
    26. Priya, S., et al., A Review on Piezoelectric Energy Harvesting: Materials, Methods, and Circuits. Energy Harvesting and Systems, 2019. 4(1): p. 3-39.
    27. J.-M. Liu, B.P., H.L.W. Chan, S.N. Zhu, Y.Y. Zhu, Z.G. Liu, Piezoelectric coefficient measurement of piezoelectric thin films an overview. 2002.
    28. Gao, P.X., et al., Nanowire Piezoelectric Nanogenerators on Plastic Substrates as Flexible Power Sources for Nanodevices. Advanced Materials, 2006. 19(1): p. 67-72.
    29. Xudong Wang, J.L., Jinhui Song, and Zhong Lin Wang, Integrated Nanogenerators in Biofluid. 2007.
    30. Wang, Z.L., Nanopiezotronics. Advanced Materials, 2007. 19(6): p. 889-892.
    31. Song, Z.L.W.a.J., Piezoelectric Nanogenerators Based on Zinc Oxide Nanowire Arrays. 2006.
    32. Wang, Z.L., On Maxwell's displacement current for energy and sensors: the origin of nanogenerators. Materials Today, 2017. 20(2): p. 74-82.
    33. Meng, X., et al., Effects of particle size of dielectric fillers on the output performance of piezoelectric and triboelectric nanogenerators. Journal of Advanced Ceramics, 2021. 10(5): p. 991-1000.
    34. Tofel, P., et al., Triboelectric Response of Electrospun Stratified PVDF and PA Structures. Nanomaterials (Basel), 2022. 12(3).
    35. Sutka, A., et al., Measuring Piezoelectric Output-Fact or Friction? Adv Mater, 2020. 32(32): p. e2002979.
    36. Cha, S., et al., Porous PVDF as effective sonic wave driven nanogenerators. Nano Lett, 2011. 11(12): p. 5142-7.
    37. Liu, W., et al., Piezoelectric and mechanical properties of CaO reinforced porous PZT ceramics with one-dimensional pore channels. Ceramics International, 2017. 43(2): p. 2063-2068.
    38. Stassi, S., et al., Flexible piezoelectric energy nanogenerator based on ZnO nanotubes hosted in a polycarbonate membrane. Nano Energy, 2015. 13: p. 474-481.
    39. Boughey, F.L., et al., Vertically aligned zinc oxide nanowires electrodeposited within porous polycarbonate templates for vibrational energy harvesting. Nanotechnology, 2016. 27(28): p. 28LT02.
    40. Ganeshkumar, R., et al., A high output voltage flexible piezoelectric nanogenerator using porous lead-free KNbO3 nanofibers. Applied Physics Letters, 2017. 111(1).
    41. Zhang, Y., et al., Performance Enhancement of Flexible Piezoelectric Nanogenerator via Doping and Rational 3D Structure Design For Self‐Powered Mechanosensational System. Advanced Functional Materials, 2019. 29(42).
    42. Karan, S.K., et al., A new insight towards eggshell membrane as high energy conversion efficient bio-piezoelectric energy harvester. Materials Today Energy, 2018. 9: p. 114-125.
    43. Sahatiya, P., S. Kannan, and S. Badhulika, Few layer MoS2 and in situ poled PVDF nanofibers on low cost paper substrate as high performance piezo-triboelectric hybrid nanogenerator: Energy harvesting from handwriting and human touch. Applied Materials Today, 2018. 13: p. 91-99.
    44. Abolhasani, M.M., et al., Thermodynamic approach to tailor porosity in piezoelectric polymer fibers for application in nanogenerators. Nano Energy, 2019. 62: p. 594-600.
    45. Kong, L., et al., Geomechanical Upscaling Methods: Comparison and Verification via 3D Printing. Energies, 2019. 12(3).
    46. Pat, S., et al., The Al doping effect on the surface, optical, electrical and nanomechanical properties of the ZnO and AZO thin films prepared by RF sputtering technique. Vacuum, 2017. 141: p. 210-215.
    47. Hao, Z., et al., Periodically poled lithium niobate whispering gallery mode microcavities on a chip. Science China Physics, Mechanics & Astronomy, 2018. 61(11).

    下載圖示 校內:立即公開
    校外:立即公開
    QR CODE