簡易檢索 / 詳目顯示

研究生: 吳宛霖
Wu, Wan-Lin
論文名稱: 衍生式設計結合建築性能最佳化於建築初期階段草案自動生成研究
Generative Design with Building Performance Optimization in the Initial Stage of Architectural Design Process
指導教授: 鄭泰昇
Jeng, Tay-Sheng
學位類別: 碩士
Master
系所名稱: 規劃與設計學院 - 建築學系
Department of Architecture
論文出版年: 2022
畢業學年度: 110
語文別: 中文
論文頁數: 87
中文關鍵詞: 衍生式設計自動生成最佳化運算建築資訊模型人工智慧
外文關鍵詞: generative design, optimization algorithms, BIM, Artificial intelligence (AI)
相關次數: 點閱:163下載:66
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 近年來,在建築設計方面導入人工智慧的案例越來越多,由參數模型、自動化衍生設計、建築性能模擬和目標優化組成,已成為輔助建築師設計的有效工具,本研究探索設計初期階段,利用數位工具輔助自動化量體草案衍生的最佳化方案,以及應用在建築設計實務流程的可能性。
    現有的設計方法流程為透過基地分析(如:動線分析、植栽分析、環境分析、建蔽率、容積率及高度限制)後,由人工生成多種配置方案後,進行對比並選擇其中一種方案後進行修改,並在最後進行環境模擬分析。傳統流程的缺點在於線性作業,無法同時配置多種方案,較容易陷入單一設計思維中,無法模擬一同列入配置考量。本研究聚焦在建築設計初期階段的設計方法流程,以建築初期草案自動化衍生為目標,整合衍生式工具進行最佳化之建築設計方案自動生成。
    本研究結合Rhino Grasshopper及Revit應用,將基地分析的限制條件參數化,連接量體生成模組,並將環境模擬提前加入參數應用,透過優化生成多種方案配置後挑選修改,在利用Revit inside Rhino導入Revit中進建築資訊模型整合,以利於設計初期草案之進行。
    本研究以成功大學旺宏館設計案進行測試,透過參數調整來設定基地限制,加入植栽保留區域、預期預留空地區域及建蔽率、總樓地板面積、樓層高度等限制,透過grasshopper插件Evomass來生成建築量體,以參數設定來限制量體生成的範圍、量體個數及單元量體的最大最小值,此外,並結合建築性能模擬,設定優化目標,透過懲罰或獎賞進行運算優化,此優化算法利用Evomass中的SSIEA進行優化運算,生成符合基地限制、設計者需求及性能模擬目標的量體草案配置。本研究透過案例驗證,標的多種量體方案,再由設計師進行挑選後修改。修改後的量體可透過Revit inside Rhino插件,將原有在Rhino生成之量體於Revit中創建可供建築資訊模型(BIM)使用之模型,達到與BIM平台的結合,以利後續在建築設計上BIM協同作業的進行。
    本研究實證的結果,透過建築師訪談、回饋與分析,顯示加入自動化草案生成後的建築初期設計方法流程,可優化生成較佳的方案或是提供新的設計想法,因提前加入環境模擬優化,可在建築設計初期階段快速提供可行性草案分析,使建築師有更多的時間能投入細部設計及修改方案,可作為未來建築師事務所導入人工智慧共同協作之參考。

    Generative design, parametric modeling, building information modeling (BIM), and building performance optimization have been used in architectural design to solve design complexity. This study uses generative design to create a novel automatic architectural design process in the early stages of architecture. It has provided a potential for solving complex design problems and improving work efficiency.

    摘要 I Abstract II 謝誌 V 目錄 VII 圖目錄 IX 表目錄 XII 第 1 章 緒論 1 1.1 研究背景及動機 1 1.2 研究目標 2 1.3 研究範疇 3 1.4 研究流程 4 第 2 章 文獻回顧 6 2.1 BIM 與參數化設計 6 2.2 衍生式設計 7 2.3 AI 於建築設計之應用 14 第 3 章 衍生式設計系統架構分析 16 3.1 系統架構 16 3.2 系統建置軟體應用 23 3.3 結合應用 36 第 4 章 設計案例操作 37 4.1 實作案例背景概述 37 4.2 參數調整差異分析 44 4.3 實作成果呈現 50 4.4 方案挑選說明 56 4.5 實際案例成果 62 第 5 章 回饋與分析 65 5.1 自動生成化衍生設計草案看法? 65 5.2 未來在 AI 協同作業中,建築師扮演何種角色? 67 5.3 建築師事務所是否可能導入 AI 人工智慧共同協作? 68 5.4 利用自動生成優化工具,該如何進行提案最終選擇? 69 5.5 AI 人工智慧與建築作業流程上的應用可能性之探討 72 第 6 章 75 6.1 結論 75 6.2 後續研究及建議 77 附錄 78 參考文獻 83 中文文獻 83 英文文獻 83 網路文獻 86

    中文文獻
    [1] 王力凱. (2020). 基於性能的建築量體設計 (Doctoral thesis, 南京大學).
    [2] 簡聖芬. (1999). 衍生式設計輔助系統:現況與未來發展.
    [3] 胡一波, & 王宇平. (2009). 解約束優化問題的一種新的罰函數模型. 計算機科學, 36(7), 240-243.
    [4] 李俊儀. (2001). 衍生式與演化式建築輔助設計系統.
    [5] 胡一波, & 王宇平. (2009). 解約束優化問題的一種新的懲罰函數模型. 計算機科 學, 36(7), 240-243.
    英文文獻
    [1] Asimow, M. (1962). Introduction to Design. Englewood Cliffs, NJ: Prentice-Hall.
    [2] Alexander, C. (1964). Notes on the Synthesis of Form. Cambridge, MA: Harvard University Press.
    [3] Coyne, R. & U. Flemming. (1990). "Planning in design synthesis: abstraction-based LOOS." Artificial Intelligence in Engineering. Vol. 1, J. Gero, ed., New York: Springer, 91-111.
    [4] Chien, S.-F. (1998). "Supporting information navigation in generative design systems." Ph.D. Dissertation, School of Architecture, Carnegie Mellon University, Pittsburgh, PA.
    [5] Costa, L. M. D., Alvarez, C. E. D., & Martino, J. A. D. (2021). Proposta de método de projeto baseado no desempenho para edifícios energeticamente eficientes. Ambiente Construído, 21, 409-433.
    [6] Duering, S., Chronic, A., & Koenig, R. (2020, May). Optimizing Urban Systems: Integrated optimization of spatial configurations. In Proceedings of the 11th Annual Symposium on Simulation for Architecture and Urban Design (pp. 1-7).
    [7] Duering, S., Chronic, A., & Koenig, R. (2020, May). Optimizing Urban Systems: Integrated optimization of spatial configurations. In Proceedings of the 11th Annual
    83
    Symposium on Simulation for Architecture and Urban Design (pp. 1-7).
    [8] Eastman, C.M. (Ed.) (1975). Spatial Synthesis in Computer- Aided Building Design. London, England: Applied Science Publishers.
    [9] Flemming, U. & R. Woodbury. (1995). "Software environment to support early phases in building design (SEED): overview." Journal of Architectural Engineering 1, 4, 147- 152.
    [10] Gero, J. (1977). Computer Applications in Architecture. London, England: Applied Science Publishers.
    [11] Gannon, M. (2017). Human-centered Interfaces for autonomous fabrication machines.
    [12] Heisserman, J. (1991). "Generative geometric design and boundary solid grammars." Ph.D. Dissertation, Department of Architecture, Carnegie Mellon University, Pittsburgh, PA.
    [13] Mitchell, W.J. (1977). Computer-Aided Architectural Design. New York, NY: Van Nostrand Reinhold.
    [14] Newell, A. & H.A. Simon. (1972). Human Problem Solving. Englewood Cliffs, NJ: Prentice-Hall.
    [15] Narangerel, A., Lee, J. H., & Stouffs, R. (2017). Thermal and Daylighting Optimization of Complex 3D Faceted Façade for Office Building.
    [16] Nauata, N., Chang, K. H., Cheng, C. Y., Mori, G., & Furukawa, Y. (2020, August). House-gan: Relational generative adversarial networks for graph-constrained house layout generation. In European Conference on Computer Vision (pp. 162-177). Springer, Cham.
    [17] Veloso, P., & Krishnamurti, R. (2020). An Academy of Spatial Agents-Generating spatial configurations with deep reinforcement learning.
    [18] Waibel, C., Bystricky, L., Kubilay, A., Evins, R., & Carmeliet, J. (2017). Validation of Grasshopper-based Fast Fluid Dynamics for Air Flow around Buildings in Early Design Stage. In Building Simulation (pp. 7-9).
    [19] Wang, L., Janssen, P., & Ji, G. (2019). Reshaping Design Search Spaces for Efficient Computational Design Optimization in Architecture. In ICCC (pp. 100-107).
    [20] Wortmann, T. (2017). Model-based optimization for architectural design: Optimizing daylight and glare in grasshopper. Technology| Architecture+ Design, 1(2), 176-185.
    [21] Wortmann, T. (2019). Architectural Design Optimization—Results from a User Survey. KnE Social Sciences, 473-483.
    [22] Wortmann, T. (2019). Genetic evolution vs. function approximation: Benchmarking algorithms for architectural design optimization. Journal of Computational Design and Engineering, 6(3), 414-428.
    [23] Wortmann, T., & Schroepfer, T. (2019, April). From optimization to performance- informed design. In Proceedings of the Symposium on Simulation for Architecture and Urban Design(pp. 1-8).
    [24] Wang, L., Chen, K. W., Janssen, P., & Ji, G. (2020). Enabling Optimisation-based Exploration for Building Massing Design-A Coding-free Evolutionary Building Massing Design Toolkit in Rhino-Grasshopper.
    [25] Wang, L., Chen, K. W., Janssen, P., & Ji, G. (2020). Algorithmic generation of architectural Massing Models for building design optimisation-Parametric Modelling Using Subtractive and Additive Form Generation Principles.
    [26] Wang, L., Janssen, P., & Ji, G. (2020). SSIEA: a hybrid evolutionary algorithm for supporting conceptual architectural design. AI EDAM, 34(4), 458-476.
    [27] Wortmann, T., & Fischer, T. (2020). Does Architectural Design Optimization Require Multiple Objectives?-A critical analysis.
    [28] Yu, D. (2020). Reprogramming Urban Block by Machine Creativity-How to use neural networks as generative tools to design space.
    [29] Zheng, H., An, K., Wei, J., & Ren, Y. (2020). Apartment Floor Plans Generation via Generative Adversarial Networks.
    [30] Zheng, H., & Ren, Y. (2020). Machine Learning Neural Networks Construction and Analysis in Vectorized Design Drawings.
    [31] Zhang, H., Wang, L., & Ji, G. (2021). The Synergy of building massing and facade-An Evo-Devo approach for performance-based design optimization combining facade design with building massing.
    網路文獻
    [32] Ladybug-Grasshopper / Avaible online : https://www.ladybug.tools/
    [33] Ladybug, Food4Rhino / Avaible online : https://www.food4rhino.com/en/app/ladybug-tools
    [34] ClimateStudio / Avaible online : https://www.solemma.com/climatestudio
    [35] GH_Wind / Avaible online : https://github.com/christophwaibel/GH_Wind
    [36] Wikipedia, 標準氣象年(TMY3) / Avaible online : https://zh.wikipedia.org/wiki/%E6%A8%99%E6%BA%96%E6%B0%A3%E8%B1%
    A1%E5%B9%B4
    [37] 蘇建儒 (2019). / Avaible online : http://www.taisuco.com/monthly/CPN.aspx?ms=1446&p=13387451&s=13387473
    [38] 何謂BIM / Avaible online : https://sites.google.com/site/bimzixunpingtai/home/he-weibim
    [39] Jianyouli (2014). 何謂衍生式設計 Avaible online :
    [40] 什麼是參數化設計? / Avaible online : https://jianyouli.wordpress.com/2014/02/01/%E4%BD%95%E8%AC%82%E8%A1% 8D%E7%94%9F%E8%A8%AD%E8%A8%88-generative-design%EF%BC%9F/
    [41] Kean Walmsley (2019). / Avaible online : https://www.keanw.com/2019/11/project-rediscover-version-2-of-the- mars-graph-is-now-available-for-download.html
    [42] Wikipedia (2021). Rhinoceros3D / Avaible online : https://zh.wikipedia.org/wiki/Rhinoceros_3D
    [43] 陳珍誠 (2017). 參數化設計:建築設計中的演算思維 / Avaible online :
    http://www.twarchitect.org.tw/special/%E5%8F%83%E6%95%B8%E5%8C%96%E8 %A8%AD%E8%A8%88%EF%BC%9A%E5%BB%BA%E7%AF%89%E8%A8%A D%E8%A8%88%E4%B8%AD%E7%9A%84%E6%BC%94%E7%AE%97%E6%80 %9D%E7%B6%AD/?doing_wp_cron=1638792667.1930348873138427734375
    [44] 什麼是參數化設計 / Avaible online : https://3dp-maker.blogspot.com/2019/07/parametric-modelling-and- Direct-Modeling-SOLIDWORKS-AutodeskInventor-CreoParametric-CA TIA-NX- nshape.html
    [45] Wallacei-Grasshopper / Avaible online : http://www/wallacei.com/
    [46] Green BIM 微氣候資訊平台 / Avaible online : http://www.weatherservice.org.tw/
    [47] Rhino.Inside.Revit / Avaible online : https://www.rhino3d.com/tw/features/rhino-inside-revit/
    [48] 適應度與選擇,2019 / Avaible online : https://blog.csdn.net/weixin_30239361/article/details/101540896
    [49] 陽傘可視化圖表生成教學 / Avaible online : https://github.com/ParasolJS/parasol-es/wiki/Tutorial-1:-Getting- started

    下載圖示 校內:立即公開
    校外:立即公開
    QR CODE