研究生: |
張岳青 Chang, Yue-Ching |
---|---|
論文名稱: |
熱鎢絲化學氣相低溫沉積奈米碳化矽薄膜電晶體之研究 The Study of Nanocrystalline Silicon Carbide Thin Film Transistor Prepared by Hot-Wire Chemical Vapor Deposition |
指導教授: |
方炎坤
Fang, Yean-Kuen |
學位類別: |
碩士 Master |
系所名稱: |
電機資訊學院 - 微電子工程研究所 Institute of Microelectronics |
論文出版年: | 2009 |
畢業學年度: | 97 |
語文別: | 中文 |
論文頁數: | 105 |
中文關鍵詞: | 薄膜電晶體 、碳化矽 、熱鎢絲 |
外文關鍵詞: | HWCVD, SiC, TFT |
相關次數: | 點閱:74 下載:2 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本論文係利用具有高沉積速率與能提供大量氫自由基特性的HWCVD,首次於N型(111)矽基板上使用甲烷、矽甲烷與氫氣成長奈米碳化矽薄膜電晶體之研究。吾人利用FTIR量測原子間的鍵結、XRD量測薄膜結晶、SEM與AFM觀察表面結構與粗糙度、ESCA測量薄膜中碳原子之含量,並比較不同成長參數製作MSM結構之薄膜電流-電壓特性。以實驗所得最佳成長參數以奈米碳化矽薄膜作為主動層,並利用二氧化鈦與二氧化矽作為介電層製作薄膜電晶體。
實驗結果顯示,鎢絲溫度、薄膜中碳原子的含量與成長時氫自由基之數量對於影響薄膜結構與導電性有顯著之影響。使用二氧化矽/二氧化鈦結構作為介電層之薄膜電晶體具有較佳之驅動電流700μA、場效遷移率62.27cm2/Vs、開關電流比2×103。這個實驗結果優於已發表的奈米晶矽薄膜電晶體之場效遷移11cm2/Vs[29]和非晶矽薄膜電晶體之場效遷移率0.9cm2/Vs[30]。如此本元件更適合作為高場效遷移率的薄膜電晶體應用於大面積平面顯示器。
In this research, we prepared nano-crystalline silicon carbide thin film transistor (nc-SiC TFTs) by a hot-wire chemical vapor deposition (HWCVD) system. The system has the features of high deposition rate and generating large amounts of H radicals. Firstly, the nc-SiC thin films were deposited on Si substrates using CH4, SiH4, H2 gas mixture and characterized by FTIR, XRD, AFM and SEM, and ESCA for bond structure measurement, analyzing crystallinity, examination of surface roughness and morphology, and investigation of carbon atomic concentration in the film, respectively. Experimental results showed the filament temperature, atomic concentration of carbon and amounts of H radicals influenced on films’ morphology and conductivity significantly.
In addition, the deposition conditions such as flow rate of CH4 and H2, filament temperature were optimized by analyzing the I-V curves of a MSM (metal-semiconductor-metal) structure. In final, we used the optimized deposition condition to prepare the active layer of the nc-SiC TFTs with a stack gate oxide of SiO2/TiO2. The TFTs with SiO2/TiO2 have the typical performances such as driving current of 700μA, field effect mobility of 62.27cm2/Vs, and on-off current ratio of 2×103 . The field effect mobility of the nc-SiC TFT is better than that of 11 cm2/Vs for a nc-Si TFT, and 0.9 cm2/Vs for an a-Si TFT. Thus, the developed device is more suitable for large flat panel display applications.
參考文獻
[1] M. B. Yu, a) Rusli, S. F. Yoon, Z. M. Chen, J. Ahn, Q. Zhang, K. Chew, and J. Cui , “Deposition of nanocrystalline cubic silicon carbide films using the hot- filament chemical-vapor-deposition method”, Journal of Applied Physics, Vol. 87, No. 11, 2000
[2] E. Weitzel, W. Palmour, H.Carter, K.Moore, J. Nordquist, S.Allen, C. Thero, M. Bhatnagar, ”Silicon Carbide High-Power Devices”, IEEE TRANSACTIONS ON ELECTRON DEVICES, Vol. 43 NO. 10, 1996
[3] 紀國鐘,鄭晃忠,“液晶顯示器技術手冊,”經濟部技術處發行,台灣電子材料與元件協會出版。
[4] S. Wagner, H. Gleskova, I.C. Cheng, M. Wu,“Silicon for thin-film transistors,”Thin Solid Films, Vol.430, pp.15–19,2003
[5] J.H. Park, S.M. Han, S.G. Park, M.K. Han, “Excimer laser recrystallization of nanocrystalline-Si films deposited by inductively coupled plasma chemical vapour deposition at 150℃,”Phys. Scr, T126, pp.85–88,2006
[6] Dosev, D. Konstantinov,“Fabrication, characterisation and modelling of nanocrystalline silicon thin-film transistors obtained by hot-wire chemical vapour deposition”, in PhD thesis. Barcelona: Universitat Politècnica de Catalunya(UPC)
[7] 葉思武, “新陶瓷學”, 復文出版社,1990
[8] 王軍, “不同基板及基板表面處理對成長碳化矽奈米線之影響”, 國立成
功大學材料科學研究所碩士論文,2008
[9] C.M. Zetterling, “Process Technology For Silicon Carbide Devices”, INSPEC,2002
[10] B Mebarji, S. Sumiya, R. Yoshida, M. Ito, T. Tsukada, , Materials Letters, Vol.41,1999
[11] J. Puigdollers, C. Voz, A. Orpella, I. Martin, D. Soler, M.Fonrodona, Bertomeu, J. Andreu, R. Alcubilla,“Electronic transport in low temperature nanocrystalline silicon thin-film transistors obtained by hot-wire CVD”, Journal of Non-Crystalline Solids, 299–302, pp.400–404,2002
[12] K.Lee, M.Shur, T.A.Fjeldly, T.Ytterda,“Semiconductor device modeling for VLSI,”1 ed. New jersey:Prentice Hall, Inc.,1993
[13] M.S. Shur, H.C. Slade, M.D. Jacunski, A.A. Owusu, T. Ytterdal,“SPICE models for amorphous silicon and polysilicon thin film transistors”, Journal of the Electrochemical Society, Vol.144, pp.2833-9,1997
[14] Dosev, D. Konstantinov, “Fabrication, characterisation and modelling of nanocrystalline silicon thin-film transistors obtained by hot-wire chemical vapour deposition.” in PhD thesis. Barcelona: Universitat Politècnica de Catalunya (UPC)
[15] S.M. Han, J.H. Park, H.S. Shin, Y.H. Choi, M.K. Han,“High Performance Nanocrystalline-Si TFT Fabricated at 150℃ Using ICP-CVD,” IEEE,2005
[16] H.Wiesmann, A.K.Gosh, T.McMahon, M.Strongin,“a-Si : H produced by high-temperature thermal decomposition of silane,” Appl. Phys.,Vol.50, pp.3752,1979
[17] D. Beeman, R. Tsu, M.F. Toorpe, Phys. Rev. B, Vol.32, pp. 874,1985
[18] Howard B. Palmer, Jacques Lahaye, Ke Chiang Hou,” Kinetics and mechanism of the thermal decomposition of methane in a flow system”, J. Phys. Chem., 72 (1), pp.348-353,1968
[19] A. Dasgupta,, Y. Huang, L. Houben, S. Klein, F. Finger, R. Carius, M.Luysberg, ” Effect of filament and substrate temperatures on the structural and electricalproperties of SiC thin films grown by the HWCVD technique”, Thin Solid Films,Vol. 516, 622–625,2008
[20] Y. Komura, A. Tabata, T. Narita, A. Kondo, T. Mizutani,” Nanocrystalline cubic silicon carbide films prepared by hot-wire chemical vapor deposition using SiH4/CH4/H2 at a low substrate temperature”, Journal of Non-Crystalline Solids, Vol.352, pp.1367–1370,2006
[21] A. Tabata, M. Mori,” Structural changes of hot-wire CVD silicon carbide thin films induced by gas flow rates”, Thin Solid Films,Vol.516,pp.626–629,2008
[22] T. Itoh , K. Fukunaga , T. Fujiwara , S. Nonomura,” Effect of hydrogen radical on growth of mc-Si in hetero-structured SiCx alloy films”, Thin Solid Films ,Vol.430,pp.33–36, 2003
[23] B.P. Swain, G. Rao, M. Roy, J. Gupta, R.O. Dusane,” Effect of H2 dilution on Cat-CVD a-SiC:H films”, Thin Solid Films,Vol.501, p.p.173 – 176, 2006
[24] A. Tabata , M. Kuroda, M. Mori, T. Mizutani, Y. Suzuoki, ” Band gap control of hydrogenated amorphous silicon carbidefilms prepared by hot-wire chemical vapor deposition”, Journal of Non-Crystalline Solids,Vol.338–340, pp.521–524,2004
[25] Y. Komura, A. Tabata,, T. Narita, A. Kondo,” Influence of gas pressure on low-temperature preparation and film properties of nanocrystalline 3C-SiC thin films by HW-CVD using SiH4/CH4/H2 system”, Thin Solid Films ,Vol.516, pp.633– 636, 2008
[26] M.S. Lee, S.F. Bent,” Temperature effects in the hot wire chemical vapor deposition of amorphous hydrogenated silicon carbon alloy”, J.Appl. Phys., Vol. 87 No. 9,2000
[27] R. Mahapatra, N. Poolamai, S. Chattopadhyay, N. G. Wright,” Characterization of thermally oxidized Ti/SiO2 gate dielectric stacks on 4H–SiC substrate”, Appl. Phys. Lett., 88, 072910,2006
[28] R. Mahapatra,” Leakage current and charge trapping behavior in TiO2 /SiO2 high-gate dielectric stack on 4H-SiC substrate”, J. Vac. Sci. Technol. B, Vol.25 No. 1,2007
[29] R.B. Min, S. Wagner, ” Nanocrystalline silicon thin-film transistors with 50-nm-thick deposited channel layer, 10 cm2V−1s−1 electron mobility and 108 on/off current ratio”, Appl. Phys. ,A 74, pp.541–543, 2002
[30] M. J. Powell, C. Glasse, P. W. Green, I. D. French, I. J. Stemp, ” An Amorphous Silicon Thin-Film Transistor with Fully Self-Aligned Top Gate Structure”, IEEE ELECTRON DEVICE LETTERS, VOL. 21, NO. 3,2000