簡易檢索 / 詳目顯示

研究生: 張岳青
Chang, Yue-Ching
論文名稱: 熱鎢絲化學氣相低溫沉積奈米碳化矽薄膜電晶體之研究
The Study of Nanocrystalline Silicon Carbide Thin Film Transistor Prepared by Hot-Wire Chemical Vapor Deposition
指導教授: 方炎坤
Fang, Yean-Kuen
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 微電子工程研究所
Institute of Microelectronics
論文出版年: 2009
畢業學年度: 97
語文別: 中文
論文頁數: 105
中文關鍵詞: 薄膜電晶體碳化矽熱鎢絲
外文關鍵詞: HWCVD, SiC, TFT
相關次數: 點閱:74下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文係利用具有高沉積速率與能提供大量氫自由基特性的HWCVD,首次於N型(111)矽基板上使用甲烷、矽甲烷與氫氣成長奈米碳化矽薄膜電晶體之研究。吾人利用FTIR量測原子間的鍵結、XRD量測薄膜結晶、SEM與AFM觀察表面結構與粗糙度、ESCA測量薄膜中碳原子之含量,並比較不同成長參數製作MSM結構之薄膜電流-電壓特性。以實驗所得最佳成長參數以奈米碳化矽薄膜作為主動層,並利用二氧化鈦與二氧化矽作為介電層製作薄膜電晶體。
      實驗結果顯示,鎢絲溫度、薄膜中碳原子的含量與成長時氫自由基之數量對於影響薄膜結構與導電性有顯著之影響。使用二氧化矽/二氧化鈦結構作為介電層之薄膜電晶體具有較佳之驅動電流700μA、場效遷移率62.27cm2/Vs、開關電流比2×103。這個實驗結果優於已發表的奈米晶矽薄膜電晶體之場效遷移11cm2/Vs[29]和非晶矽薄膜電晶體之場效遷移率0.9cm2/Vs[30]。如此本元件更適合作為高場效遷移率的薄膜電晶體應用於大面積平面顯示器。

    In this research, we prepared nano-crystalline silicon carbide thin film transistor (nc-SiC TFTs) by a hot-wire chemical vapor deposition (HWCVD) system. The system has the features of high deposition rate and generating large amounts of H radicals. Firstly, the nc-SiC thin films were deposited on Si substrates using CH4, SiH4, H2 gas mixture and characterized by FTIR, XRD, AFM and SEM, and ESCA for bond structure measurement, analyzing crystallinity, examination of surface roughness and morphology, and investigation of carbon atomic concentration in the film, respectively. Experimental results showed the filament temperature, atomic concentration of carbon and amounts of H radicals influenced on films’ morphology and conductivity significantly.

    In addition, the deposition conditions such as flow rate of CH4 and H2, filament temperature were optimized by analyzing the I-V curves of a MSM (metal-semiconductor-metal) structure. In final, we used the optimized deposition condition to prepare the active layer of the nc-SiC TFTs with a stack gate oxide of SiO2/TiO2. The TFTs with SiO2/TiO2 have the typical performances such as driving current of 700μA, field effect mobility of 62.27cm2/Vs, and on-off current ratio of 2×103 . The field effect mobility of the nc-SiC TFT is better than that of 11 cm2/Vs for a nc-Si TFT, and 0.9 cm2/Vs for an a-Si TFT. Thus, the developed device is more suitable for large flat panel display applications.

    目錄 中文摘要 I 英文摘要 III 目錄 V 圖表目錄 VIII 第一章、導論 1 1-1前言 1 1-2奈米碳化矽 2 1-3 論文架構 4 第二章、理論基礎 5 2-1薄膜電晶體基本結構 5 2-2薄膜電晶體工作原理 5 2.2.1汲極電流相對於汲極電壓的I-V曲線 5 2.2.2汲極電流相對於閘極電壓的I-V曲線 7 2-3薄膜電晶體電性參數 9 第三章、實驗與量測儀器和製程步驟 13 3-1 HWCVD特性 13 3-2影響奈米碳化矽薄膜的參數 15 3-3 TFT相關製程技術 19 3-3-1真空蒸著系統 19 3-3-2射頻磁控濺鍍系統 20 3-4量測儀器 22 3-4-1 場放射型掃描式電子顯微鏡..……..……..……………22 3-4-2 原子力顯微鏡……………..…..……………..…………23 3-4-3 α-step 膜厚量測儀…………………..…….……………23 3-4-4 X光繞射儀…………………...…………………………23 3-4-5 傅立葉轉換紅外線光譜儀…………..…..………..……25 3-5製程步驟與成長參數 25 3-5-1準備乾淨的矽基板 26 3-5-2使用濺鍍系統成長閘極絕緣層 26 3-5-3使用HWCVD成長主動層 27 3-5-4使用蒸著系統成長電極 27 第四章 結果與討論 28 4-1奈米碳化矽薄膜分析 28 4-1-1 CH4對薄膜特性之影響 28 4-1-2 H2對薄膜特性之影響 30 4-1-3鎢絲溫度對薄膜特性之影響 32 4-2奈米碳化矽薄膜電晶體分析 33 4-2-1 ID-VD特性曲線 35 4-2-2 ID-VG特性曲線 35 4-2-3 C-V特性曲線 36 第五章、結論與展望 38 5-1 結論 38 5-2 展望 39 參考文獻 40 圖表目錄 表4-1 SiC成長參數表 44 表4-2 SiC薄膜最佳參數表 45 表4-3 不同介電層之TFT電性參數比較 45 表5-1 μc-Si與μc-SiC-TFT 特性比較 46 圖1-1 在主動矩陣液晶顯示器(AMLCDs)中單一畫素(pixel)的結構 47 圖1-2 四種常見碳化矽之堆疊示意圖 48 圖1-3 SiH4、CH4與H2混和氣體經催化熱解沉積奈米碳化矽 49 圖2-1. 薄膜電晶體的構造分為(a)上閘極與(b)下閘極 50 圖2-2. 薄膜電晶體的構造分為(a)交錯型與(b)共面型 50 圖2-3. 在微小汲極電壓下,不同閘極驅動電壓的變化 51 圖2-4. 固定閘極電壓下,電流隨汲極電壓的變化 52 圖2-5. 汲極電流相對於閘極電壓(IDS-VGS)曲線圖 53 圖2-6. 三種估計臨限電壓的方法 54 圖2-7. n+層和聚積的電洞層,形成逆偏PN接面,避免IOFF的增加55 圖2-8. (a)TFT開啟使液晶可穿透(b) TFT關閉使液晶不可穿透... ...56 圖3-1 HWCVD成長系統圖 57 圖3-2 蒸著成長系統圖 58 圖3-3 濺鍍成長系統圖 59 圖3-4 奈米碳化矽薄膜電晶體step-by-step的製程步驟 60 圖4-1 SiC不同CH4流量的FTIR比較 61 圖4-2 SiC不同CH4流量的ESCA比較 62 圖4-3 SiC XRD分析 63 圖4-4不同CH4流量之SiC SEM圖比較 64 圖4-5 SiC之側面SEM圖 66 圖4-6不同CH4流量之SiC AFM圖比較 68 圖4-7 (a)CH4對薄膜電特性量測MSM結構圖 70 圖4-7 (a)CH4對薄膜電特性影響之I-V曲線圖 71 圖4-8 SiC不同H2流量的FTIR比較 72 圖4-9不同H2流量之SiC SEM圖比較 73 圖4-10不同H2流量之SiC AFM圖比較 75 圖4-11 不同H2流量的粗糙度比較 77 圖4-12 H2對薄膜電特性影響之I-V曲線圖 78 圖4-13 SiC不同鎢絲溫度的FTIR比較 79 圖4-14 SiC不同鎢絲溫度的XRD比較 80 圖4-15 不同鎢絲溫度之SEM圖比較 81 圖4-16 鎢絲溫度對薄膜電特性影響之I-V曲線圖 83 圖4-17 使用TiO2與SiO2作為介電層之TFT結構圖 84 圖4-18 使用TiO2作為介電層之TFT結構圖 85 圖4-19 使用TiO2與SiO2作為介電層之TFT ID-VD特性曲線 86 圖4-20 使用TiO2作為介電層之TFT ID-VD特性曲線 87 圖4-21 使用TiO2與SiO2作為介電層之TFT ID-VG特性曲線 88 圖4-22 使用TiO2與SiO2作為介電層之TFT ID-VG轉換曲線 88 圖4-23 使用TiO2作為介電層之TFT ID-VG特性曲線 89 圖4-24 使用TiO2作為介電層之TFT ID-VG轉換曲線 89 圖4-25 TFT C-V特性曲線 90

    參考文獻
    [1] M. B. Yu, a) Rusli, S. F. Yoon, Z. M. Chen, J. Ahn, Q. Zhang, K. Chew, and J. Cui , “Deposition of nanocrystalline cubic silicon carbide films using the hot- filament chemical-vapor-deposition method”, Journal of Applied Physics, Vol. 87, No. 11, 2000
    [2] E. Weitzel, W. Palmour, H.Carter, K.Moore, J. Nordquist, S.Allen, C. Thero, M. Bhatnagar, ”Silicon Carbide High-Power Devices”, IEEE TRANSACTIONS ON ELECTRON DEVICES, Vol. 43 NO. 10, 1996
    [3] 紀國鐘,鄭晃忠,“液晶顯示器技術手冊,”經濟部技術處發行,台灣電子材料與元件協會出版。
    [4] S. Wagner, H. Gleskova, I.C. Cheng, M. Wu,“Silicon for thin-film transistors,”Thin Solid Films, Vol.430, pp.15–19,2003
    [5] J.H. Park, S.M. Han, S.G. Park, M.K. Han, “Excimer laser recrystallization of nanocrystalline-Si films deposited by inductively coupled plasma chemical vapour deposition at 150℃,”Phys. Scr, T126, pp.85–88,2006
    [6] Dosev, D. Konstantinov,“Fabrication, characterisation and modelling of nanocrystalline silicon thin-film transistors obtained by hot-wire chemical vapour deposition”, in PhD thesis. Barcelona: Universitat Politècnica de Catalunya(UPC)
    [7] 葉思武, “新陶瓷學”, 復文出版社,1990
    [8] 王軍, “不同基板及基板表面處理對成長碳化矽奈米線之影響”, 國立成
    功大學材料科學研究所碩士論文,2008
    [9] C.M. Zetterling, “Process Technology For Silicon Carbide Devices”, INSPEC,2002
    [10] B Mebarji, S. Sumiya, R. Yoshida, M. Ito, T. Tsukada, , Materials Letters, Vol.41,1999
    [11] J. Puigdollers, C. Voz, A. Orpella, I. Martin, D. Soler, M.Fonrodona, Bertomeu, J. Andreu, R. Alcubilla,“Electronic transport in low temperature nanocrystalline silicon thin-film transistors obtained by hot-wire CVD”, Journal of Non-Crystalline Solids, 299–302, pp.400–404,2002
    [12] K.Lee, M.Shur, T.A.Fjeldly, T.Ytterda,“Semiconductor device modeling for VLSI,”1 ed. New jersey:Prentice Hall, Inc.,1993
    [13] M.S. Shur, H.C. Slade, M.D. Jacunski, A.A. Owusu, T. Ytterdal,“SPICE models for amorphous silicon and polysilicon thin film transistors”, Journal of the Electrochemical Society, Vol.144, pp.2833-9,1997
    [14] Dosev, D. Konstantinov, “Fabrication, characterisation and modelling of nanocrystalline silicon thin-film transistors obtained by hot-wire chemical vapour deposition.” in PhD thesis. Barcelona: Universitat Politècnica de Catalunya (UPC)
    [15] S.M. Han, J.H. Park, H.S. Shin, Y.H. Choi, M.K. Han,“High Performance Nanocrystalline-Si TFT Fabricated at 150℃ Using ICP-CVD,” IEEE,2005
    [16] H.Wiesmann, A.K.Gosh, T.McMahon, M.Strongin,“a-Si : H produced by high-temperature thermal decomposition of silane,” Appl. Phys.,Vol.50, pp.3752,1979
    [17] D. Beeman, R. Tsu, M.F. Toorpe, Phys. Rev. B, Vol.32, pp. 874,1985
    [18] Howard B. Palmer, Jacques Lahaye, Ke Chiang Hou,” Kinetics and mechanism of the thermal decomposition of methane in a flow system”, J. Phys. Chem., 72 (1), pp.348-353,1968
    [19] A. Dasgupta,, Y. Huang, L. Houben, S. Klein, F. Finger, R. Carius, M.Luysberg, ” Effect of filament and substrate temperatures on the structural and electricalproperties of SiC thin films grown by the HWCVD technique”, Thin Solid Films,Vol. 516, 622–625,2008
    [20] Y. Komura, A. Tabata, T. Narita, A. Kondo, T. Mizutani,” Nanocrystalline cubic silicon carbide films prepared by hot-wire chemical vapor deposition using SiH4/CH4/H2 at a low substrate temperature”, Journal of Non-Crystalline Solids, Vol.352, pp.1367–1370,2006
    [21] A. Tabata, M. Mori,” Structural changes of hot-wire CVD silicon carbide thin films induced by gas flow rates”, Thin Solid Films,Vol.516,pp.626–629,2008
    [22] T. Itoh , K. Fukunaga , T. Fujiwara , S. Nonomura,” Effect of hydrogen radical on growth of mc-Si in hetero-structured SiCx alloy films”, Thin Solid Films ,Vol.430,pp.33–36, 2003
    [23] B.P. Swain, G. Rao, M. Roy, J. Gupta, R.O. Dusane,” Effect of H2 dilution on Cat-CVD a-SiC:H films”, Thin Solid Films,Vol.501, p.p.173 – 176, 2006
    [24] A. Tabata , M. Kuroda, M. Mori, T. Mizutani, Y. Suzuoki, ” Band gap control of hydrogenated amorphous silicon carbidefilms prepared by hot-wire chemical vapor deposition”, Journal of Non-Crystalline Solids,Vol.338–340, pp.521–524,2004
    [25] Y. Komura, A. Tabata,, T. Narita, A. Kondo,” Influence of gas pressure on low-temperature preparation and film properties of nanocrystalline 3C-SiC thin films by HW-CVD using SiH4/CH4/H2 system”, Thin Solid Films ,Vol.516, pp.633– 636, 2008
    [26] M.S. Lee, S.F. Bent,” Temperature effects in the hot wire chemical vapor deposition of amorphous hydrogenated silicon carbon alloy”, J.Appl. Phys., Vol. 87 No. 9,2000
    [27] R. Mahapatra, N. Poolamai, S. Chattopadhyay, N. G. Wright,” Characterization of thermally oxidized Ti/SiO2 gate dielectric stacks on 4H–SiC substrate”, Appl. Phys. Lett., 88, 072910,2006
    [28] R. Mahapatra,” Leakage current and charge trapping behavior in TiO2 /SiO2 high-gate dielectric stack on 4H-SiC substrate”, J. Vac. Sci. Technol. B, Vol.25 No. 1,2007
    [29] R.B. Min, S. Wagner, ” Nanocrystalline silicon thin-film transistors with 50-nm-thick deposited channel layer, 10 cm2V−1s−1 electron mobility and 108 on/off current ratio”, Appl. Phys. ,A 74, pp.541–543, 2002
    [30] M. J. Powell, C. Glasse, P. W. Green, I. D. French, I. J. Stemp, ” An Amorphous Silicon Thin-Film Transistor with Fully Self-Aligned Top Gate Structure”, IEEE ELECTRON DEVICE LETTERS, VOL. 21, NO. 3,2000

    下載圖示 校內:2012-07-14公開
    校外:2012-07-14公開
    QR CODE