| 研究生: |
謝正忠 Hsieh, Cheng-Chung |
|---|---|
| 論文名稱: |
固相法製備銅錳氧化物粉末及其燒結塊材熱電性質之研究 A study on powder preparation by solid-state reaction and thermoelectric properties of sintered bulk for copper manganese oxides |
| 指導教授: |
黃啓祥
Hwang, Chii-Shyang |
| 學位類別: |
博士 Doctor |
| 系所名稱: |
工學院 - 材料科學及工程學系 Department of Materials Science and Engineering |
| 論文出版年: | 2016 |
| 畢業學年度: | 104 |
| 語文別: | 中文 |
| 論文頁數: | 132 |
| 中文關鍵詞: | CuMnO2 、錳銅礦 、摻雜 、層狀結構 、熱電性質 |
| 外文關鍵詞: | CuMnO2, Crednerite, Substitution, Layer structure, Thermoelectric properties |
| 相關次數: | 點閱:57 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
氧化物熱電材料近年來備受矚目與研究。其中,改質固有且常見的氧化物熱電材料是個重要的研究方向,而開發新穎的氧化物熱電材料亦是個重要的研究方向。錳銅礦 (Crednerite) CuMnO2具有熱電材料特性的低能隙 (band gap) 和層狀結構 (layer structure),但以往並無其熱電相關之研究報導,本研究首次將之作為有潛力的熱電材料而作有序的研究。
首先,未摻雜的CuMn1+xO2 (x = 0 – 0.2) 粉末是以固相法製備並燒結成塊材,實驗是檢討不同的組成配比對 CuMn1+xO2 (x = 0 – 0.2) 塊材的結晶相、顯微結構和熱電性質之影響。燒結塊材的結晶相和顯微結構分別以X光繞射儀和掃描式電子顯微鏡分析,塊材的熱電性質之研究範圍則是從室溫至573 K。結果顯示不同的組成配比影響CuMn1+xO2燒結塊材的結晶相和熱電性質,x = 0.1或者x = 0.143的組成配比者可以得到CuMnO2的純相,其他的組成配比者會產生第二相 (CuO和Mn3O4);CuMn1+xO2 (x = 0 – 0.2) 燒結塊材皆為層狀結構。CuMn1+xO2 (x = 0 – 0.2) 塊材為p-type的半導體,其Seebeck係數 (S) 是隨著錳含量的增加至x = 0.1而增加,但電傳導率 (σ) 則呈現減少的趨勢,當錳含量持續增加時 (x > 0.143) ,Seebeck係數會呈現減少的趨勢而電傳導率則反之呈現增加的趨勢。CuMn1+xO2 (x = 0 – 0.2) 燒結塊材的功率因子 (PF) 因Seebeck係數之增加而明顯有增加的趨勢,而熱傳導率 (κ) 隨著量測溫度之增加而減少。第二相會影響塊材的電傳導率、Seebeck係數和熱傳導率。CuMn1.1O2燒結塊材具有最高的熱電優值 (ZT)。
其次, CuMn1.1-xExO2 (E = Mg, Ca, Sr, x = 0 – 0.2) 粉末亦是以固相法製備並燒結成塊材,實驗是檢討不同的摻雜元素與其摻雜量對CuMn1.1-xExO2 (E = Mg, Ca, Sr, x = 0 – 0.2) 塊材的結晶相、顯微結構和熱電性質之影響。結果顯示不同的摻雜元素和摻雜量皆會影響燒結塊材的結晶相、顯微結構和熱電性質。除了鎂摻雜的塊材其摻雜量x增加到0.15時會出現Mn3O4的第二相之外,其他的摻雜試樣其結晶相皆為錳銅礦的CuMnO2相。由Seebeck係數可知CuMn1.1-xExO2 (E = Mg, Ca, Sr, x = 0 – 0.2) 塊材為p-type的半導體,並且陽離子的置換可增加其電傳導率、減少熱傳導率而Seebeck係數變化不大。CuMn0.9Mg0.2O2的燒結塊材在室溫時具有最低的熱傳導率和最大的熱電優值。
再者, CuMn1.1O2/xAg (x = 0 – 10 wt %) 粉末亦以固相法製備並燒結成塊材,實驗是檢討不同的銀添加量對CuMn1.1O2/xAg (x = 0 – 10 wt %) 塊材的結晶相、顯微結構和熱電性質之影響。結果顯示不同的銀添加量皆會影響燒結塊材的結晶相、顯微結構和熱電性質。全部試樣的主相和顯微結構均為CuMnO2與層狀結構,銀添加量大於4 wt %的塊材能發現銀的峰值。添加銀的CuMn1.1O2/xAg (x = 0 – 10 wt %) 塊材仍為p-type半導體,添加銀可有效增加其電傳導率、明顯減少Seebeck係數和熱傳導率。CuMn1.1O2/8 wt % Ag的燒結塊材在573 K時具有最大的熱電優值。
最後,CuMn1.1O2、CuMn0.9Mg0.2O2和CuMn1.1O2/8 wt % Ag是選取各節具有最大ZT值的試樣,分別整理三者在室溫的材料特性和熱電性質作為不同製程間的討論。不同製程的銅錳氧化物塊材均能獲得CuMnO2的主相和層狀結構,其中,以未改質的CuMn1.1O2塊材具有最大的室溫Seebeck係數、CuMn0.9Mg0.2O2塊材具有最小室溫的熱傳導率,而CuMn1.1O2/8 wt % Ag塊材具有最大的室溫電傳導率和熱電優值。
Crednerite CuMnO2 ceramic has been investigated for the first time in this study as a potential thermoelectric material, based on its low band gap and layer structure. Effects of the Cu/Mn ratio, MgII, CaII and SrII substitution in MnIII-site or Ag additive on the preparation and the thermoelectric properties of CuMnO2 bullks were investigated. CuMn1+xO2 (x = 0 – 0.2), CuMn1.1-xExO2 (E = Mg, Ca, Sr, x = 0 – 0.2) and CuMn1.1O2/xAg (x = 0 – 10 wt %) bulks with a delafossite structure were prepared via solid-state reactions, then sintered at 1353 K, 1343 K and 1238 K for 2.5 h in argon, respectively. The main phase of all bulks is crednerite CuMnO2. All bulks are p-type semiconductors. The power factor (PF) of the CuMn1+xO2 (x = 0 – 0.2) samples could be improved by the increase of Mn contents due to the significant increase in the Seebeck coefficient (S). The thermal conductivity (κ) was decreased with increasing temperature, and the lowest κ and the highest ZT value was obtained for the CuMn1.1O2 sample at 573 K. The cation substitution could increase electrical conductivity (σ) and decrease the thermal conductivity of the CuMn1.1-xExO2 (E = Mg, Ca, Sr, x = 0 – 0.2) bulks. The CuMn0.9Mg0.2O2 sample showed the lowest thermal conductivity and the highest figure of merit (ZT) at room temperature. The Ag additive could increase electrical conductivity and decrease the the thermal conductivity and the Seebeck coefficient of CuMn1.1O2/xAg (x = 0 – 10 wt %) bulks. The CuMn1.1O2/8 wt % Ag sample showed the highest ZT at 573 K.
[1] H. R. Jo, C. S. Lynch, Phase transformation based pyroelectric waste heat energy harvesting with improved practicality, Smart Materials and Structures, 25, 035009-1-035009-12 (2016).
[2] D. M. Rowe, CRC handbook of thermoelectrics, CRC Press, Boca Raton, USA, (1995).
[3] G. S. Nolas, J. W. Sharp and H. J. Goldsmid, Thermoelectrics: Basic principles and new materials developments, Springer-Verlag, Heidelberg (2001).
[4] I. Terasaki, Y. Sasago, K. Uchinokura, Large thermoelectric power in NaCo2O4 single crystals, Physical Review B, 56, R12685-R12687 (1997).
[5] I. Terasaki, Transport properties and electronic states of the thermoelectric oxide NaCo2O4, Physica B, 328, 63-67 (2003).
[6] K. Fujita, T. Mochida, K. Nakamura, High-temperature thermoelectric properties of NaxCoO2-δ single crystals, Japanese Journal of Applied Physics, 40, 4644-4647 (2001).
[7] Y. Ando, N. Miyamoto, K. Segawa, T. Kawata, I. Terasaki, Specific-heat evidence for strong electron correlations in the thermoelectric material (Na, Ca)Co2O4, Physical Review B, 60, 10580-10583 (1999).
[8] D. M. Rowe, Thermoelectrics Handbook: Macro to nano, CRC Press, New York (2006).
[9] N. Koriche, A. Bouguelia, M. Mohammedi, M. Trari, Synthesis and physical properties of new oxide AgMnO2, Journal of Materials Science, 42, 4778-4784 (2007).
[10] C. H. Kuo, C. S. Hwang, M. S. Jeng, W. S. Su, Y. W. Chou, J. R. Ku, Thermoelectric transport properties of bismuth telluride bulk materials fabricated by ball milling and spark plasma sintering, Journal of Alloys and Compounds, 496, 687-690 (2010).
[11] C. H. Kuo, M. S. Jeng, J. R. Ku, S. K. Wu, Y. W. Chou, C. S. Hwang, P-type PbTe thermoelectric bulk materials with nanograins fabricated by attrition milling and spark plasma sintering, Journal of Electronic Materials, 38, 1956-1961 (2009).
[12] C. H. Kuo, H. S. Chien, C. S. Hwang, Y. W. Chou, M. S. Jeng, M. Yoshimura, Thermoelectric properties of fine-grained PbTe bulk materials fabricated by cryomilling and spark plasma sintering, Materials Transactions, 52, 795-801 (2011).
[13] F. R. Sie, C. S. Hwang, C. H. Kuo, Y. W. Chou, C. H. Yeh, H. Y. Ho, Y. L. Lin, C. H. Lan, Thermoelectric performance of Bi0.5Sb1.5Te3/Sb composites fabricated by electroless plating and spark plasma sintering, Journal of Electronic Materials, 44, 1498-1503 (2015).
[14] M. Presečnik, J. de Boor, S. Bernik, Synthesis of single-phase Ca3Co4O9 ceramics and their processing for a microstructure-enhanced thermoelectric performance, Ceramics International, 42, 7315-7327 (2016).
[15] T. Schulz, J. Töpfer, Thermoelectric properties of Ca3Co4O9 ceramics prepared by an alternative pressure-less sintering/annealing method, Journal of Alloys and Compounds, 659, 122-126 (2016).
[16] D. V. Singh, E. Pedersen, A review of waste heat recovery technologies for maritime applications, Energy Conversion and Management, 111, 315-328 (2016).
[17] F. Damay, S. Petit, S. Rols, M. Braendlein, R. Daou, E. Elkaïm, F. Fauth, F. Gascoin, C. Martin, A. Maignan, Localised Ag+ vibrations at the origin of ultralow thermal conductivity in layered thermoelectric AgCrSe2, Scientific Reports, 6, 1-7 (2016).
[18] L. D. Hicks, M. S. Dresselhaus, Effect of quantum-well structures on the thermoelectric figure of merit, Physical Review B, 47, 12727-12731 (1993).
[19] G. Kieslich, G. Cerretti, I. Veremchuk, R. P. Hermann, M. Panthöfer, J. Grin, W. Tremel, A chemists view : Metal oxides with adaptive structures for thermoelectric applications, Physica Status Solidi (a), 213, 808-823 (2016).
[20] Y. Bessekhouad, M. Trari, J. P. Doumerc, CuMnO2, a novel hydrogen photoevolution catalyst, International Journal of Hydrogen Energy, 28, 43-48 (2003).
[21] R. O. Idem, N. N. Bakhshi, Characterization studies of calcined, promoted and non-promoted methanol-steam reforming catalysts, The Canadian Journal of Chemical Engineering, 74, 288-300 (1996).
[22] S. A. M. Abdel-Hameed, F. H. Margha, A. A. El-Meligi, Investigating hydrogen storage behavior of CuMnO2 glass-ceramic material, International Journal of Energy Research, 38, 459-465 (2014).
[23] Y. Bessekhouad, Y. Gabes, A. Bouguelia, M. Trari, The physical and photo electrochemical characterization of the crednerite CuMnO2, Journal of Materials Science, 42, 6469-6476 (2007).
[24] F. C. M. Driessens, G. D. Rieck, Phase equilibria in the system Cu-Mn-O, Zeitschrift Für Anorganische Und Allgemeine Chemie, 351, 48-62 (1967).
[25] T. J. Seebeck, Ueber den magnetismus der galvenische kette. abh. k, Akad. Wiss., Berlin, 289-346, (1821).
[26] T. J. Seebeck, Ueber die magnetische polarisation der metalle und erze durch temperaturdifferenz, Annalen der Physik, 82, 253-286 (1826).
[27] T. J. Seebeck, Methode, platinatiegel auf ihr chemische reinheit durch thermomagnetismus zu prufen, Schweigger's J. Phys. 46, 101-107 (1826).
[28] J. C. A. Peltier, Nouvelles expériences sur la caloricité des courants électriques, Annales de Chimie et de Physique, 56, 371-386 (1834).
[29] W. Thomson, An account of carnot's theory of the motive power of heat, Transactions of the Royal Society of Edinburgh, 16, 541-574 (1849).
[30] W. Thomson, On a mechanical theory of thermo-electric currents, Proceedings of the Royal Society of Edinburgh, 3, 91-98 (1857).
[31] W. Thomson, Account of researches in thermo-electricity, Proceedings of the Royal Society of London, 7, 49-58 (1854).
[32] W. Thomson, On the electro-dynamic qualities of metals, Proceedings of the Royal Society of London, 8, 546-550 (1856).
[33] P. W. Bridgeman, The thermodynamics of electrical phenomena in metals, Dover, New York (1961).
[34] W. F. Roeser, Thermoelectric thermometry, Journal of Applied Physics, 11, 388-407 (1940).
[35] R. P. Benedict, Fundamentals of temperature, pressure and flow measurements, 3rd ed., Wiley-Interscience, New York (1984).
[36] H. B. Callen, The application of Onsager's reciprocal relations to thermoelectric, thermomagnetic, and galvanomagnetic effects, Physical Review, 73, 1349 (1948).
[37] C. A. Domenicali, Irreversible thermodynamics of thermoelectricity, Reviews of Modern Physics, 26, 237-275 (1954).
[38] C. Kittel, Introduction to solid state physics, 7th ed., John Wiley & Sons, New York (1996).
[39] G. D. Mahan, M. Bartkowiak, Wiedemann–Franz law at boundaries, Applied Physics Letters, 74, 953-954 (1999).
[40] M. Cutler, N. F. Mott, Observation of anderson localization in an electron gas, Physical Review, 181, 1336-1340 (1969).
[41] S. G. Kim, I. I. Mazin, D. J. Singh, First-principles study of Zn-Sb thermoelectrics, Physical Review B, 57, 6199-6204 (1998).
[42] K. Uehara, S. T. John, Calculations of transport properties with the linearized augmented plane-wave method, Physical Review B, 61, 1639-1642 (2000).
[43] J. P. Heremans, V. Jovovic, E. S. Toberer, A. Saramat, K. Kurosaki, A. Charoenphakdee, S. Yamanaka, G. J. Snyder, Enhancement of thermoelectric efficiency in PbTe by distortion of the electronic density of states, Science, 321, 554-557 (2008).
[44] K. Kishimoto, T. Koyanagi, Preparation of sintered degenerate n-type PbTe with a small grain size and its thermoelectric properties, Journal of Applied Physics, 92, 2544-2549 (2002).
[45] K. Kishimoto, M. Tsukamoto, T. Koyanagi, Temperature dependence of the Seebeck coefficient and the potential barrier scattering of n-type PbTe films prepared on heated glass substrates by rf sputtering, Journal of Applied Physics, 92, 5331-5339 (2002).
[46] K. Kishimoto, K. Yamamoto, T. Koyanagi, Influences of potential barrier scattering on the thermoelectric properties of sintered n-type PbTe with a small grain size, Japanese Journal of Applied Physics, 42, 501-508 (2003).
[47] C. W. Nan, R. Birringer, Determining the Kapitza resistance and the thermal conductivity of polycrystals: A simple model, Physical Review B, 57, 8264-8268 (1998).
[48] T. C. Harman, P. J. Taylor, M. P. Walsh, B. E. LaForge, Quantum dot superlattice thermoelectric materials and devices, Science, 297, 2229-2232 (2002).
[49] R. Venkatasubramanian, E. Siivola, T. Colpitts, B. O'quinn, Thin-film thermoelectric devices with high room-temperature figures of merit, Nature, 413, 597-602 (2001).
[50] H. Ohta, S. Kim, Y. Mune, T. Mizoguchi, K. Nomura, S. Ohta, T. Nomura, Y. Nakanishi, Y. Ikuhara, M. Hirano, Giant thermoelectric Seebeck coefficient of a two-dimensional electron gas in SrTiO3, Nature Materials, 6, 129-134 (2007).
[51] Y. M. Lin, M. S. Dresselhaus, Thermoelectric properties of superlattice nanowires, Physical Review B, 68, 075304-1-075304-14 (2003).
[52] M. C. Steele, F. D. Rosi, Thermal conductivity and thermoelectric power of Germanium‐Silicon alloys, Journal of Applied Physics, 29, 1517-1520 (1958).
[53] D. M. Rowe and C. M. Bhandari, Modern thermoelectrics, Rinehart & Winston, London (1983).
[54] G. A. Slack, M. A. Hussain, The maximum possible conversion efficiency of silicon‐germanium thermoelectric generators, Journal of Applied Physics, 70, 2694-2718 (1991).
[55] G. S. Nolas, D. T. Morelli, T. M. Tritt, Skutterudites: A phonon-glass-electron crystal approach to advanced thermoelectric energy conversion applications, Annual Review of Materials Science, 29, 89-116 (1999).
[56] G. S. Nolas, M. Kaeser, R. T. Littleton IV, T. M. Tritt, High figure of merit in partially filled ytterbium skutterudite materials, Applied Physics Letters, 77, 1855-1857 (2000).
[57] G. S. Nolas, J. Poon, M. Kanatzidis, Recent developments in bulk thermoelectric materials, MRS Bulletin, 31, 199-205 (2006).
[58] B. C. Sales, D. Mandrus, R. K. Williams, Filled skutterudite antimonides: A new class of thermoelectric materials, Science, 272, 1325-1328 (1996).
[59] J. S. Dyck, W. Chen, C. Uher, L. Chen, X. Tang, T. Hirai, Thermoelectric properties of the n-type filled skutterudite Ba0.3Co4Sb12 doped with Ni, Journal of Applied Physics, 91, 3698-3705 (2002).
[60] N. P. Blake, S. Latturner, J. D. Bryan, G. D. Stucky, H. Metiu, Band structures and thermoelectric properties of the clathrates Ba8Ga16Ge30, Sr8Ga16Ge30, Ba8Ga16Si30, and Ba8In16Sn30, The Journal of Chemical Physics, 115, 8060-8073 (2001).
[61] V. L. Kuznetsov, L. A. Kuznetsova, A. E. Kaliazin, D. M. Rowe, Preparation and thermoelectric properties of A8IIB16IIIB30IV clathrate compounds, Journal of Applied Physics, 87, 7871-7875 (2000).
[62] A. Bentien, V. Pacheco, S. Paschen, Y. Grin, F. Steglich, Transport properties of composition tuned α-and β-Eu8Ga16−xGe30+x, Physical Review B, 71, 165206-1-165206-12 (2005).
[63] G. K. H. Madsen, K. Schwarz, P. Blaha, D. J. Singh, Electronic structure and transport in type-I and type-VIII clathrates containing strontium, barium, and europium, Physical Review B, 68, 125212-1-125212-7 (2003).
[64] W. Jeitschko, Transition metal stannides with MgAgAs and MnCu2Al type structure, Metallurgical Transactions, 1, 3159-3162 (1970).
[65] J. Tobola, J. Pierre, S. Kaprzyk, R. V. Skolozdra, M. A. Kouacou, Crossover from semiconductor to magnetic metal in semi-Heusler phases as a function of valence electron concentration, Journal of Physics: Condensed Matter, 10, 1013-1032 (1998).
[66] S. Sakurada, N. Shutoh, Effect of Ti substitution on the thermoelectric properties of (Zr, Hf) NiSn half-Heusler compounds, Applied Physics Letters, 86, 082105-1-082105-3 (2005).
[67] Q. Shen, L. Chen, T. Goto, T. Hirai, J. Yang, G. P. Meisner, C. Uher, Effects of partial substitution of Ni by Pd on the thermoelectric properties of ZrNiSn-based half-Heusler compounds, Applied Physics Letters, 79, 4165-4167 (2001).
[68] S. Bhattacharya, A. L. Pope, R. T. Littleton IV, T. M. Tritt, V. Ponnambalam, Y. Xia, S.J. Poon, Effect of Sb doping on the thermoelectric properties of Ti-based half-Heusler compounds, TiNiSn1−xSbx, Applied Physics Letters, 77, 2476-2478 (2000).
[69] J. Yang, G. P. Meisner, L. Chen, Strain field fluctuation effects on lattice thermal conductivity of ZrNiSn-based thermoelectric compounds, Applied Physics Letters, 85, 1140-1142 (2004).
[70] T. Takami, H. Nanba, Y. Umeshima, M. Itoh, H. Nozaki, H. Itahara, J. Sugiyama, Phase separation in the CoO2 layer observed in thermoelectric layered cobalt dioxides, Physical Review B, 81, 014401-1-014401-12 (2010).
[71] J. Androulakis, P. Migiakis, J. Giapintzakis, La0.95Sr0.05CoO3: An efficient room-temperature thermoelectric oxide, Applied Physics Letters, 84, 1099-1101 (2004).
[72] K. Koumoto, I. Terasaki and M. Murayama, Oxide thermoelectrics, Research Signpost, India (2002).
[73] Y. Ando, N. Miyamoto, K. Segawa, T. Kawata, I. Terasaki, Specific-heat evidence for strong electron correlations in the thermoelectric material (Na, Ca)Co2O4, Physical Review B, 60, 10580-10583 (1999).
[74] Y. Takano, C. Ogawa, Y. Miyahara, H. Ozaki, K. Sekizawa, Single crystal growth of (LaO)CuS, Journal of Alloys and Compounds, 249, 221-223 (1997).
[75] A. M. Kusainova, P. S. Berdonosov, L. G. Akselrud, L. N. Kholodkovskaya, V. A. Dolgikh, B. A. Popovkin, New layered compounds with the general composition (MO)(CuSe), where M = Bi, Nd, Gd, Dy, and BiOCuS: Syntheses and crystal structure, Journal of Solid State Chemistry, 112, 189-191 (1994).
[76] P. S. Berdonosov, A. M. Kusainova, L.N. Kholodkovskaya, V. A. Dolgikh, L. G. Akselrud, B. A. Popovkin, Powder X-ray and IR studies of the new oxyselenides MOCuSe (M = Bi, Gd, Dy), Journal of Solid State Chemistry, 118, 74-77 (1995).
[77] K. Ueda, S. Inoue, S. Hirose, H. Kawazoe, H. Hosono, Transparent p-type semiconductor : LaCuOS layered oxysulfide, Applied Physics Letters, 77, 2701-2703 (2000).
[78] S. I. Inoue, K. Ueda, H. Hosono, N. Hamada, Electronic structure of the transparent p-type semiconductor (LaO)CuS, Physical Review B, 64, 245211-245215 (2001).
[79] H. Hiramatsu, K. Ueda, H. Ohta, T. Kamiya, M. Hirano, H. Hosono, Excitonic blue luminescence from p-LaCuOSe/n-InGaZn5O8 light-emitting diode at room temperature, Applied Physics Letters, 87, 211107-1-211107-3 (2005).
[80] L. Pinsard‐Gaudart, D. Bérardan, J. Bobroff, N. Dragoe, Large Seebeck coefficients in iron‐oxypnictides: A new route towards n‐type thermoelectric materials, Physica Status Solidi (RRL)-Rapid Research Letters, 2, 185-187 (2008).
[81] Y. L. Pei, J. He, J. F. Li, F. Li, Q. Liu, W. Pan, C. Barreteau, D. Berardan, N. Dragoe, L. D. Zhao, High thermoelectric performance of oxyselenides: Intrinsically low thermal conductivity of Ca-doped BiCuSeO, NPG Asia Materials, 5, e47-41-e47-49 (2013).
[82] J. F. Li, J. Sui, C. Barreteau, D. Berardan, N. Dragoe, W. Cai, Y. L. Pei, L. D. Zhao, Thermoelectric properties of Mg doped p-type BiCuSeO oxyselenides, Journal of Alloys and Compounds, 551, 649-653 (2013).
[83] J. Li, J. Sui, Y. Pei, C. Barreteau, D. Berardan, N. Dragoe, W. Cai, J. He, L.D. Zhao, A high thermoelectric figure of merit ZT > 1 in Ba heavily doped BiCuSeO oxyselenides, Energy & Environmental Science, 5, 8543-8547 (2012).
[84] L. D. Zhao, D. Berardan, Y. L. Pei, C. Byl, L. Pinsard-Gaudart, N. Dragoe, Bi1-xSrxCuSeO oxyselenides as promising thermoelectric materials, Applied Physics Letters, 97, 092118-092111-092118-092113 (2010).
[85] L. D. Zhao, J. He, D. Berardan, Y. L. Lin, J. F. Li, C. W. Nan, N. Dragoe, BiCuSeO oxyselenides: New promising thermoelectric materials, Energy & Environmental Science, 7, 2900-2924 (2014).
[86] H. Ohta, Thermoelectrics based on strontium titanate, Materials Today, 10, 44-49 (2007).
[87] T. Okuda, K. Nakanishi, S. Miyasaka, Y. Tokura, Large thermoelectric response of metallic perovskites: Sr1−xLaxTiO3 (0 ≤ x ≤ 0.1), Physical Review B, 63, 113104-1-113104-4 (2001).
[88] S. Ohta, T. Nomura, H. Ohta, K. Koumoto, High-temperature carrier transport and thermoelectric properties of heavily La- or Nb-doped SrTiO3 single crystals, Journal of Applied Physics, 97, 034106-1-034106-4 (2005).
[89] J. Ravichandran, W. Siemons, D. W. Oh, J. T. Kardel, A. Chari, H. Heijmerikx, M. L. Scullin, A. Majumdar, R. Ramesh, D. G. Cahill, High-temperature thermoelectric response of double-doped SrTiO3 epitaxial films, Physical Review B, 82, 165126-1-165126-5 (2010).
[90] S. Lee, R. H. T. Wilke, S. Trolier-McKinstry, S. Zhang, C. A. Randall, SrxBa1-xNb2O6−δ Ferroelectric-thermoelectrics: Crystal anisotropy, conduction mechanism, and power factor, Applied Physics Letters, 96, 031910-1-031910-3 (2010).
[91] S. Lee, G. Yang, R. H. T. Wilke, S. Trolier-McKinstry, C. A. Randall, Thermopower in highly reduced n-type ferroelectric and related perovskite oxides and the role of heterogeneous nonstoichiometry, Physical Review B, 79, 134110-1-134110-8 (2009).
[92] K. Koumoto, Y. Wang, R. Zhang, A. Kosuga, R. Funahashi, Oxide thermoelectric materials: A nanostructuring approach, Annual Review of Materials Research, 40, 363-394 (2010).
[93] K. P. Ong, D. J. Singh, P. Wu, Analysis of the thermoelectric properties of n-type ZnO, Physical Review B, 83, 115110-1-115110-5 (2011).
[94] Y. Kinemuchi, M. Mikami, K. Kobayashi, K. Watari, Y. Hotta, Thermoelectric properties of nanograined ZnO, Journal of Electronic Materials, 39, 2059-2063 (2010).
[95] P. Jood, R. J. Mehta, Y. Zhang, G. Peleckis, X. Wang, R. W. Siegel, T. Borca-Tasciuc, S. X. Dou, G. Ramanath, Al-doped zinc oxide nanocomposites with enhanced thermoelectric properties, Nano Letters, 11, 4337-4342 (2011).
[96] Y. Fujishiro, M. Miyata, M. Awano, K. Maeda, Characterization of thermoelectric metal oxide elements prepared by the pulse electric‐current sintering method, Journal of the American Ceramic Society, 87, 1890-1894 (2004).
[97] L. Shi, J. Chen, G. Zhang, B. Li, Thermoelectric figure of merit in Ga-doped [0001] ZnO nanowires, Physics Letters A, 376, 978-981 (2012).
[98] Y. Yang, K. C. Pradel, Q. Jing, J. M. Wu, F. Zhang, Y. Zhou, Y. Zhang, Z. L. Wang, Thermoelectric nanogenerators based on single Sb-doped ZnO micro/nanobelts, ACS Nano, 6, 6984-6989 (2012).
[99] B. R. Pamplin, Crystal growth, 2nd ed., Pergamon Press, Oxford (1980).
[100] W. D. Lawson, A method of growing single crystals of lead telluride and lead selenide, Journal of Applied Physics, 22, 1444-1447 (1951).
[101] Y. Sato, M. Fujimoto, A. Kobayashi, Effects of heat treatment on lead telluride under tellurium pressure: Carrier concentration dependence of mobility and etch pits on Worked Surfaces, Japanese Journal of Applied Physics, 2, 688-694 (1963).
[102] R. Breschi, A. Camanzi, V. Fano, Defects in PbTe single crystals, Journal of Crystal Growth, 58, 399-408 (1982).
[103] M. P. Gomez, D. A. Stevenson, R. A. Huggins, Self-diffusion of Pb and Te in lead telluride, Journal of Physics and Chemistry of Solids, 32, 335-344 (1971).
[104] E. P. A. Metz, R. C. Miller, R. Mazelsky, A technique for pulling single crystals of volatile materials, Journal of Applied Physics, 33, 2016-2017 (1962).
[105] W. F. Leverton, Floating crucible technique for growing uniformly doped crystals, Journal of Applied Physics, 29, 1241-1244 (1958).
[106] N. K. Abrikosov, L. L. Ivanova, Single-crystls of solid-solutions of the system Bi2Te3-Bi2Se3-Sb2Te3, Inorganic Materials, 15, 926-929 (1979).
[107] W. G. Pfann, Zone melting, 2nd ed., John Wiley & Sons, New York (1966).
[108] T. Caillat, M. Carle, D. Perrin, H. Scherrer, S. Scherrer, Study of the Bi-Sb-Te ternary phase diagram, Journal of Physics and Chemistry of Solids, 53, 227-232 (1992).
[109] A. A. Aivazov, A. I. Anukhin, I. S. Gavrilenko, Zone melting characteristics by complex semiconductors, Inorganic Materials, 27, 780-785 (1991).
[110] J. Ye, L. Ajdelsztajn, J.M. Schoenung, Bulk nanocrystalline aluminum 5083 alloy fabricated by a novel technique: Cryomilling and spark plasma sintering, Metallurgical and Materials Transactions A, 37, 2569-2579 (2006).
[111] C. Suryanarayana, Mechanical alloying and milling, Progress in Materials Science, 46, 1-184 (2001).
[112] W. Zhang, L. Zhang, Y. Cheng, Z. Hui, X. Zhang, Y. Xie, Y. Qian, Synthesis of nanocrystalline lead chalcogenides PbE (E= S, Se, or Te) from alkaline aqueous solutions, Materials Research Bulletin, 35, 2009-2015 (2000).
[113] T. Mokari, M. Zhang, P. Yang, Shape, size, and assembly control of PbTe nanocrystals, Journal of the American Chemical Society, 129, 9864-9865 (2007).
[114] L. A. Bloomfield, How things work: The physics of everyday life (Third Edition), John Wiley & Sons (2006).
[115] M. Tokita, Development of large-size ceramic/metal bulk FGM fabricated by spark plasma sintering, Materials Science Forum, Trans Tech Publications, 308-311, 83-88 (1999).
[116] X. Nie, S. H. Wei, S. B. Zhang, Bipolar doping and band-gap anomalies in delafossite transparent conductive oxides, Physical Review Letters, 88, 066405-1-066405-4 (2002).
[117] J. Topfer, M. Trari, P. Gravereau, J. P. Chaminade, J. P. Doumerc, Crystal growth and reinvestigation of the crystal structure of crednerite, CuMnO2, Zeitschrift fur Kristallographie, 210, 184-187 (1995).
[118] R. D. Shannon, D. B. Rogers, C. T. Prewitt, J. L. Gillson, Chemistry of noble metal oxides. III. Electrical transport properties and crystal chemistry of ABO2 compounds with the delafossite structure, Inorganic Chemistry, 10, 723-727 (1971).
[119] X. Nie, S. H. Wei, S. B. Zhang, Bipolar doping and band-gap anomalies in delafossite transparent conductive oxides, Physical Review Letters, 88, 1-5 (2002).
[120] P. F. Carcia, R. D. Shannon, P. E. Bierstedt, R. B. Flippen, O2 electrocatalysis on thin film metallic oxide electrodes with the delafossite structure, Journal of the Electrochemical Society, 127, 1974-1978 (1980).
[121] J. Christopher, C. S. Swamy, Catalytic activity and XPS investigation of dalofossite oxides, CuMO2 (M= Al, Cr or Fe), Journal of Materials Science, 27, 1353-1356 (1992).
[122] K. Domen, S. Ikeda, T. Takata, A. Tanaka, M. Hara, J. N. Kondo, Mechano-catalytic overall water-splitting into hydrogen and oxygen on some metal oxides, Applied Energy, 67, 159-179 (2000).
[123] J. P. Doumerc, C. Parent, Z. J. Chao, G. Le Flem, A. Ammar, Luminescence of the Cu+ ion in CuLaO2, Journal of the Less Common Metals, 148, 333-337 (1989).
[124] A. Jacob, C. Parent, P. Boutinaud, G. Le Flem, J. P. Doumerc, A. Ammar, M. Elazhari, M. Elaatmani, Luminescent properties of delafossite-type oxides LaCuO2 and YCuO2, Solid State Communications, 103, 529-532 (1997).
[125] K. Koumoto, H. Koduka, W. S. Seo, Thermoelectric properties of single crystal CuAlO2 with a layered structure, Journal of Materials Chemistry, 11, 251-252 (2001).
[126] A. N. Banerjee, R. Maity, P. K. Ghosh, K. K. Chattopadhyay, Thermoelectric properties and electrical characteristics of sputter-deposited p-CuAlO2 thin films, Thin Solid Films, 474, 261-266 (2005).
[127] K. Park, K. Y. Ko, W. S. Seo, Thermoelectric properties of CuAlO2, Journal of the European Ceramic Society, 25, 2219-2222 (2005).
[128] T. Nagaura, New material AgNiO2 for miniature alkaline batteries, Progress in Batteries and Solar Cells, 4, 105-107 (1982).
[129] J. Bandara, J. P. Yasomanee, P-type oxide semiconductors as hole collectors in dye-sensitized solid-state solar cells, Semiconductor Science and Technology, 22, 20-24 (2006).
[130] X. G. Zheng, K. Taniguchi, A. Takahashi, Y. Liu, C. N. Xu, Room temperature sensing of ozone by transparent p-type semiconductor CuAlO2, Applied Physics Letters, 85, 1728-1729 (2004).
[131] F. A. Benko, F. P. Koffyberg, Opto-electronic properties of CuAlO2, Journal of Physics and Chemistry of Solids, 45, 57-59 (1984).
[132] H. Kawazoe, M. Yasukawa, H. Hyodo, M. Kurita, H. Yanagi, H. Hosono, P-type electrical conduction in transparent thin films of CuAlO2, Nature, 389, 939-942 (1997).
[133] H. Yanagi, T. Hase, S. Ibuki, K. Ueda, H. Hosono, Bipolarity in electrical conduction of transparent oxide semiconductor CuInO2 with delafossite structure, Applied Physics Letters, 78, 1583-1585 (2001).
[134] L. D. Hicks, T. C. Harman, M. S. Dresselhaus, Use of quantum‐well superlattices to obtain a high figure of merit from nonconventional thermoelectric materials, Applied Physics Letters, 63, 3230-3232 (1993).
[135] M. Trari, J. Töpfer, P. Dordor, J. C. Grenier, M. Pouchard, J. P. Doumerc, Preparation and physical properties of the solid solutions Cu1+xMn1−xO2 (0≤x≤0.2) Journal of Solid State Chemistry, 178, 2751-2758 (2005).
[136] H. Hiraga, T. Fukumura, A. Ohtomo, T. Makino, A. Ohkubo, H. Kimura, M. Kawasaki, Optical and magnetic properties of CuMnO2 epitaxial thin films with a delafossite-derivative structure, Applied Physics Letters, 95, 032109-1-032109-3 (2009).
[137] G. Nolas, J. Sharp, H. Goldsmid, Thermoelectrics basic principles and new materials developments, Springer (2001).
[138] C. Alcock, V. Itkin, M. Horrigan, Vapour pressure equations for the metallic elements: 298–2500K, Canadian Metallurgical Quarterly, 23, 309-313 (1984).
[139] I. Nakai, Y. Sugitani, K. Nagashima, Y. Niwa, X-ray photoelectron spectroscopic study of copper minerals, Journal of Inorganic and Nuclear Chemistry, 40, 789-791 (1978).
[140] T. Robert, G. Offergeld, X-ray photo-electric spectra of Cu compounds-relationship between the satellite lines and the oxidation of Cu, Physica Status Solidi(a), 14, 277-282 (1972).
[141] S. Vepřek, D. L. Cocke, S. Kehl, H. R. Oswald, Mechanism of the deactivation of hopcalite catalysts studied by XPS, ISS, and other techniques, Journal of Catalysis, 100, 250-263 (1986).
[142] M. Oku, K. Hirokawa, X-ray photoelectron spectroscopy of Co3O4, Fe3O4, Mn3O4, and related compounds, Journal of Electron Spectroscopy and Related Phenomena, 8, 475-481 (1976).
[143] J. C. Carver, G. K. Schweitzer, T. A. Carlson, Use of X‐Ray photoelectron spectroscopy to study bonding in Cr, Mn, Fe, and Co compounds, The Journal of Chemical Physics, 57, 973-982 (1972).
[144] R. O. Ansell, T. Dickinson, A. F. Povey, An X-ray photo-electron spectroscopic study of the films on coloured stainless steel and coloured ‘nilomag’ alloy 771, Corrosion Science, 18, 245-256 (1978).
[145] A. Samokhvalov, N. Viglin, B. Gizhevskij, N. Loshkareva, V. Osipov, N. Solin, Y.P. Sukhorukov, Low-mobility charge carriers in CuO, Zhurnal Eksperimentalnoi i Teoreticheskoi Fiziki, 103, 951-961 (1993).
[146] R. Metselaar, R. Van Tol, P. Piercy, The electrical conductivity and thermoelectric power of Mn3O4 at high temperatures, Journal of Solid State Chemistry, 38, 335-341 (1981).
[147] V. P. Barkhatov, Y. V. Golikov, A. G. Zalazinskii, V. F. Balakirev, G. I. Chufarov, Phase diagram of the Mg-Mn-O system, Doklady Physical Chemistry, 252, 370 (1980).
[148] P. V. Riboud, A. Muan, Melting relations of CaO‐Manganese oxide and MgO‐manganese oxide mixtures in air, Journal of the American Ceramic Society, 46, 33-36 (1963).
[149] R. S. Roth, C. J. Rawn, J. J. Ritter, B. P. Burton, Phase equilibria of the system SrO‐CaO‐CuO, Journal of the American Ceramic Society, 72, 1545-1549 (1989).
[150] N. M. Hwang, R. S. Roth, C. J. Rawn, Phase equilibria in the systems SrO‐CuO and SrO‐1/2Bi2O3, Journal of the American Ceramic Society, 73, 2531-2533 (1990).
[151] G. J. Snyder, E. S. Toberer, Complex thermoelectric materials, Nature Materials, 7, 105-114 (2008).
[152] T. Larbi, M. H. Lakhdar, A. Amara, B. Ouni, A. Boukhachem, A. Mater, M. Amlouk, Nickel content effect on the microstructural, optical and electrical properties of p-type Mn3O4 sprayed thin films, Journal of Alloys and Compounds, 626, 93-101 (2015).
[153] C. C. Hsieh, C. S. Hwang, C. H. Kuo, X. D. Qi, C. L. Hsiao, Fabrication and thermoelectric properties of CuMn1+xO2 (x = 0 – 0.2) ceramics, Ceramics International, 41, 12303-12309 (2015).
校內:2021-09-01公開