簡易檢索 / 詳目顯示

研究生: 楊孟法
Yang, Meng-Fa
論文名稱: 一個十位元每秒取樣二千七百萬次低功率逐漸趨近式類比數位轉換器
A 10-bit 27-MS/s Low Power SAR ADC
指導教授: 張順志
Chang, Soon-Jyh
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 電機工程學系
Department of Electrical Engineering
論文出版年: 2010
畢業學年度: 98
語文別: 英文
論文頁數: 72
中文關鍵詞: 逐漸趨近式
外文關鍵詞: SAR ADC, successive-approximation
相關次數: 點閱:85下載:24
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文研製了一個十位元操作在每秒二千七百萬次取樣頻率逐漸趨近似類比數位轉換器,採用了節省電容開關的切換機制,有效達到低功率消耗的目的。相較於傳統的切換方式,由電容陣列所組成的數位類比轉換器,其平均切換能量可減少81.3%。
    本設計的類比數位轉換器實現於TSMC 0.18-μm 1P6M互補金氧半製程,其核心電路面積為0.205 mm x 0.31 mm,整個晶片在1.8-V的供應電壓和27MS/s取樣頻率 ,消耗功率為1.21 mW,每次轉換所消耗的平均能量為 226.2 fJ。在20MS/s取樣頻率下,每次轉換所消耗的平均能量為 85.7 fJ。

    This thesis reports the design and implementation of a 10-bit 27-MS/s low-power successive-approximation-register (SAR) analog-to-digital converter (ADC). A set-and-down switching sequence technique is adopted to reduce the power consumption of the proposed ADC. The average switching energy of the capacitor array can be reduced by 81.3% compared to the conventional switching method.
    The designed ADC is fabricated in TSMC 0.18-μm 1P6M CMOS technology, and occupies 0.205 mm x 0.31 mm core areas. The total chip draws 1.21 mW from 1.8-V power supply at 27-MS/s sampling rate, and the average energy consumption per conversion step is 226.2 fJ. At 20-MS/s sampling rate, the average energy consumption per conversion step is 85.7 fJ.

    List of Figures VI List of Tables VIII Chapter 1 Introduction 1 1.1 Motivation 1 1.2 Thesis Organization 4 Chapter 2 Fundamentals of ADC 5 2.1 Ideal ADC 5 2.2 ADC Performance Metrics 7 2.2.1 Static Specifications 7 2.2.2 Dynamic Specifications 11 2.3 Review of ADC Architecture 16 2.3.1 Flash ADC 17 2.3.2 Pipelined ADC 18 2.3.3 Successive-Approximation (SAR) ADC 20 2.3.4 Summary of ADC Architectures 22 Chapter 3 The Principle of SAR ADC 24 3.1 The Architecture of SAR ADC 25 3.1.1 DAC-Based Successive Approximation 25 3.1.2 Charge-Redistribution ADC 27 3.2 Switching Method 31 3.2.1 Previous Switching Methods 31 3.2.2 Splitting Capacitor 37 3.2.3 Energy-Saving 39 Chapter 4 A 10-bit 27-MS/s Low Power SAR ADC 41 4.1 Motivation 41 4.2 ADC Architecture and Operation 42 4.2.1 Fully Differential 42 4.2.2 Set-and-Down 45 4.3 Circuit Implementation 49 4.3.1 Bootstrapped Switch 49 4.3.2 Comparator 52 4.3.3 DAC Capacitor Array 54 4.3.4 SAR Control Logic 56 4.4 Layout and Measurement setup 57 4.5 Measurement Result 60 4.6 Comparison and Discussion 66 Chapter 5 Conclusion and Future Work 68 Bibliography 70

    [1]S.-W. M. Chen and R. W. Brodersen, “A 6-bit 600-MS/s 5.3-mW asynchronous ADC in 0.13-m CMOS,” IEEE J. Solid-State Circuits, vol. 41, no. 12, pp. 2669-2680, Dec. 2006.
    [2]J. Sauerbrey, D. Schmitt-Landsiedel, and R. Thewes, “A 0.5-V 1μW Successive Approximation ADC,” IEEE J. Solid-State Circuits, vol. 38, no. 7, pp. 1261-1265, July. 2003.
    [3]M. D. Scott, B. E. Boser, and K. S. J. Pister, “An ultralow-energy ADC for smart dust,” IEEE J. Solid-State Circuits, vol. 38, no. 7, pp. 1123-1129, Jul. 2003.
    [4]N. Verma and A. Chandrakasan, “A 25μW 100kS/s 12b ADC for Wireless Micro-Sensor Applications,” in ISSCC Dig. Tech. Papers, Feb. 2006, pp. 222-223.
    [5]M. van Elzakker, E. van Tuijl, P. Geraedts, D. Schinkel, E. Klumperink, and B. Nauta, “ A 1.9μW 4.4fJ/Conversion-Step 10b 1MS/s charge-redistribution ADC,” in ISSCC Dig. Tech. Papers, Feb. 2008, pp. 244-245.
    [6]B. P. Ginsburg and A. P. Chandrakasan, “500-MS/s 5-bit ADC in 65-nm CMOS with split capacitor array DAC,” IEEE J. Solid-State Circuits, vol. 42, no. 4, pp. 739-747, Apr. 2007.
    [7]B. P. Ginsburg and A. P. Chandrakasan, “An energy-efficient charge recycling approach for a SAR converter with capacitive DAC,” in Proc. of the IEEE Int. Symp. on Circuits and Systems, May. 2005, pp. 184-187.
    [8]Y.-K. Chang, C.-S. Wang, and C.-K. Wang, “A 8-bit 500KS/s low power SAR ADC for bio-medical applications,” in Proc. IEEE Asian Solid-State Circuits Conf., Nov. 2007, pp. 228-231.
    [9]C. C. Liu, S. J. Chang, G. Y. Huang, Y. Z. Lin, “A 0.92mW 10-bit 50-MS/s SAR ADC in 0.13 m CMOS process,” in IEEE Symp. on VLSI Circuits, Jun. 2009, pp. 236-237.
    [10]L. Sumanen, “Pipeline Analogto-Digital Converters for Wide-Band Wireless Communications,” PhD Dissertation, Helsinki University of Technology, Helsinki, Finland, Dec. 2002.
    [11]H. Nyquist, “Certain Topics in Telegraph Transmission Theory,” Trans. Am. Inst. Electr. Eng., vol. 47, pp. 617-644, Feb. 1924.
    [12]M. Waltari and K. Halonen, Circuit Techniques for Low-Voltage and High-Speed A/D Converter. Kluwer Academic Publisher, 2002.
    [13]C. W. Mangelsdorf, “A 400-MHz Input Flash Converter with Error Correction,” IEEE J. Solid-State Circuits, vol. 25, no. 1, pp. 184-191, Feb. 1990.
    [14]D. Johns and K. Martin, Analog Integrated Circuit Design. New York: John Wiley&Sons, 1997.
    [15]J. L. Mccreary and P. R. Gray, “All-MOS charge redistribution analog-to-digital conversion techniques-Part I,” IEEE J. Solid-State Circuits, vol. 10, no. 6, pp. 371-379, Dec. 1975.
    [16]Christian Lillebrekke, Carsten Wulff and Trond Ytterdal, “ Bootstrapped Switch In Low-Voltage Digital 90nm CMOS Technology,” Norchip Conference, nov. 2005.
    [17]A. M. Abo and P. R. Gray, “A 1.5-V, 10-bit, 14.3-MS/s CMOS pipeline analog-to-digital converter,” IEEE J. Solid-State Circuits, vol. 34, no. 5, pp. 599-606, May. 1999.
    [18]S. Jiang, M. A. Do, K. S. Yeo, and W. M. Lim, “An 8-bit 200-MSample/s pipelined ADC with mixed-mode front-end S/H circuit,” IEEE Trans. Circuits Syst. I, Reg. Papers., vol. 53, no. 8, pp. 1693-1703, Aug. 2006.
    [19]S. J. Lovett, M. Welten, A. Mathewson, and B. Mason, “Optimizing MOS transistor mismatch,” IEEE J. Solid-State Circuits, vol. 33, no. 1, pp. 147-150, Jan. 1998.
    [20]H. C. Hong and G. M. Lee, “A 65-fJ/Conversion-Step 0.9-V 200-kS/s Rail-to-Rail 8-bit Successive Approximation ADC,” IEEE J. Solid-State Circuits, vol. 42, no. 10, pp. 2161-2168, Oct. 2007.
    [21]黃意婷, “A 6-bit 220-MS/s Successive-Approximation Analog-to-Digital Converter,” MS Thesis, National Cheng-Kung Univ., Taiwan, Dec. 2008.
    [22]蘇逸霈, “An analog-to-digital converter with DLL clock generator,” MS Thesis, National Taiwan Univ., Taiwan, Jul. 2006.
    [23]張哲維, “Design and application of analog-to-digital converter,” MS Thesis, National Taiwan Univ., Taiwan, Jul. 2007.
    [24]鄭光偉, “1.0-V 10-bit CMOS pipelined analog-to-digital converters,” MS Thesis, National Taiwan Univ., Taiwan, Jul. 2002.
    [25]Z. Cao, S. Yan, and Y. Li, “A 32mW 1.25GS/s 6b 2b/step SAR ADC in 130nm digital CMOS,” in ISSCC Dig. Tech. Papers, Feb. 2008, pp. 542-543.
    [26]Y.-D. Jeon, S.-C. Lee, K.-D. Kim, J,-K. Kwon, and J. Kim “A 4.7mW 0.32mm2 10b 30MS/s Pipelined ADC Without a Front-End S/H in 90nm CMOS,” in ISSCC Dig. Tech. Papers, Feb. 2007, pp. 456-458.
    [27]J. Li, X. Zeng, L. Xie, J. Chen, J. Zhang, and Y. Guo, “A 1.8-V 22-mW 10-bit 30-MS/s Pipelined CMOS ADC for Low-Power Subsampling Applications,” IEEE J. Solid-State Circuits, vol. 43, no. 2, pp. 321-329, Feb. 2008.
    [28]F. Borghetti, J. H. Nielsen, V. Y. Ferragina, P. Andreani, and A. Baschirotto, “A Programmable 10b up-to-6MS/s SAR-ADC Featuring Constant-FoM On-Chip Reference Voltage Buffers,” in Proc. ESSCIRC, Sep. 2006, pp. 500-503.
    [29]V. Giannini, P. Nuzzo, V. Chironi, A. Baschirotto, G. van der Plas, and J. Craninckx, “An 820uW 9b 40MS/s Noise Tolerant Dynamic-SAR ADC in 90nm Digital CMOS,” in ISSCC Dig. Tech. Papers, Feb. 2008, pp. 238-239.

    下載圖示 校內:2013-08-27公開
    校外:2015-08-27公開
    QR CODE