| 研究生: |
呂欣怡 Lu, Hsin-I |
|---|---|
| 論文名稱: |
利用單顆粒式感應耦合電漿質譜儀評估二氧化鈦奈米顆粒經攝食暴露對斑馬魚之生物累積與排除作用 Evaluating the Bioaccumulation and Depuration of Nanoparticulate TiO2 in Zebrafish (Danio rerio) via Dietary Exposure Using Single Particle-ICP-MS |
| 指導教授: |
侯文哲
Hou, Wen-Che |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 環境工程學系 Department of Environmental Engineering |
| 論文出版年: | 2020 |
| 畢業學年度: | 108 |
| 語文別: | 英文 |
| 論文頁數: | 57 |
| 中文關鍵詞: | 單顆粒式感應耦合電漿質譜儀 、奈米顆粒 、生物累積作用 、毒理動力學 |
| 外文關鍵詞: | spICP-MS, nanoparticles, bioaccumulation, toxicokinetic |
| 相關次數: | 點閱:120 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
隨著奈米科技快速進步,人造奈米物質(ENMs)的產量與產值亦逐年上升,並有可能在其製造、使用、廢棄的過程中進入到環境中。若水環境中的奈米物質被底棲生物食入並在營養階層轉移,將增加高級消費者(如:魚類)的攝食暴露風險。
為評估二氧化鈦奈米顆粒(nTiO2)經攝食暴露對斑馬魚之生物累積性,本研究首先開發酵素消化方法,使用蛋白酶K消解斑馬魚組織且避免造成顆粒的溶解或聚集,再配合單顆粒式感應耦合電漿質譜儀(spICP-MS)方法即可偵測斑馬魚組織中之奈米顆粒累積,並同時量測組織內奈米顆粒質量濃度、數量濃度與粒徑。在添加實驗中,此方法能夠得到88.0 ± 3.6%之質量回收率以及103.0 ± 0.9%之顆粒數量回收率。比較添加 nTiO2之組織樣本與 nTiO2水相懸浮液之粒徑分佈圖,亦可觀察到兩者的粒徑相近,顯示消化方法不會造成粒徑顯著變化。
其次,我們以經濟合作暨發展組織測試規範No. 305 (OECD TG 305)作為藍本進行魚類生物累積性測試,接著利用前述酵素消化配合spICP-MS方法分析斑馬魚體內之nTiO2濃度與粒徑分佈。結果顯示,攝食暴露能夠導致nTiO2在斑馬魚體內累積與排除,且斑馬魚可能傾向攝取並累積較小粒徑之nTiO2。最後,我們利用實驗數據建立一室毒理動力學模型,計算生物放大因子(BMF)為 0.009 ± 0.001,顯示為不具生物放大作用。而模型中的參數在未來可以應用於ENMs的交叉驗證(read-across)或環境宿命模擬,有助於辨識ENMs的潛在風險。
As nanotechnology evolves, engineered nanomaterials (ENMs) are used in various fields. The increasing production and usage of ENMs might inevitably lead to environmental release. The exposure of the sediments and benthic species may eventually result in subsequent dietary exposure of higher trophic levels (e.g., predatory fish) via trophic transfer.
In order to evaluate the the bioaccumulation potential of nanoparticulate TiO2 (nTiO2) in zebrafish (Danio rerio) via dietary exposure, we developed an enzymatic digestion method as sample pretreatment prior to single particle-inductively coupled plasma-mass spectrometry (spICP-MS) analysis. This method is able to quantify number concentration, mass concentration and size distribution of nTiO2 in zebrafish tissues simultaneously. The mass recovery and number recovery of nTiO2 in this study were 88.0 ± 3.6% and 103.0 ± 0.9%, respectively (n=2).
Afterwards, this method was used to analyze zebrafish tissue samples from a bioaccumulation experiment via dietary exposure. At the end of the uptake phase, we observed an increasing number of pulses in time-resolved analysis (TRA) and that nanoparticles (NPs) with smaller sizes became a major portion of detected nTiO2 after dietary exposure. We suggested that zebrafish are able to uptake nTiO2 from food and they might preferably uptake NPs with smaller sizes.
Finally, we built a single compartmental toxicokinetic (TK) model which is based on a mass balance equation and a 1st-order fitting of experimental data. We found out that the nTiO2 mass concentration measured by spICP-MS fitted with 1st-order depuration kinetics very well.
(1) Vance, M. E.; Kuiken, T.; Vejerano, E. P.; McGinnis, S. P.; Jr, M. F. H.; Rejeski, D.; Hull, M. S. Nanotechnology in the Real World: Redeveloping the Nanomaterial Consumer Products Inventory. Beilstein J. Nanotechnol. 2015, 6 (1), 1769–1780. https://doi.org/10.3762/bjnano.6.181.
(2) ACS Select on Nanotechnology in Food and Agriculture: A Perspective on Implications and Applications. J. Agric. Food Chem. 2014, 62 (6), 1209–1212. https://doi.org/10.1021/jf5002588.
(3) Zhang, L.; Gu, F. X.; Chan, J. M.; Wang, A. Z.; Langer, R. S.; Farokhzad, O. C. Nanoparticles in Medicine: Therapeutic Applications and Developments. Clinical Pharmacology & Therapeutics 2008, 83 (5), 761–769. https://doi.org/10.1038/sj.clpt.6100400.
(4) Aitken, R. J.; Chaudhry, M. Q.; Boxall, A. B. A.; Hull, M. Manufacture and Use of Nanomaterials: Current Status in the UK and Global Trends. Occup Med (Lond) 2006, 56 (5), 300–306. https://doi.org/10.1093/occmed/kql051.
(5) Fréchette-Viens, L.; Hadioui, M.; Wilkinson, K. J. Quantification of ZnO Nanoparticles and Other Zn Containing Colloids in Natural Waters Using a High Sensitivity Single Particle ICP-MS. Talanta 2019, 200, 156–162. https://doi.org/10.1016/j.talanta.2019.03.041.
(6) Bevers, S.; Montaño, M. D.; Rybicki, L.; Hofmann, T.; von der Kammer, F.; Ranville, J. F. Quantification and Characterization of Nanoparticulate Zinc in an Urban Watershed. Front. Environ. Sci. 2020, 8. https://doi.org/10.3389/fenvs.2020.00084.
(7) Xu, L.; Wang, Z.; Zhao, J.; Lin, M.; Xing, B. Accumulation of Metal-Based Nanoparticles in Marine Bivalve Mollusks from Offshore Aquaculture as Detected by Single Particle ICP-MS. Environmental Pollution 2020, 260, 114043. https://doi.org/10.1016/j.envpol.2020.114043.
(8) Peters, R. J. B.; van Bemmel, G.; Milani, N. B. L.; den Hertog, G. C. T.; Undas, A. K.; van der Lee, M.; Bouwmeester, H. Detection of Nanoparticles in Dutch Surface Waters. Science of The Total Environment 2018, 621, 210–218. https://doi.org/10.1016/j.scitotenv.2017.11.238.
(9) Loosli, F.; Wang, J.; Rothenberg, S.; Bizimis, M.; Winkler, C.; Borovinskaya, O.; Flamigni, L.; Baalousha, M. Sewage Spills Are a Major Source of Titanium Dioxide Engineered (Nano)-Particle Release into the Environment. Environ. Sci.: Nano 2019, 6 (3), 763–777. https://doi.org/10.1039/C8EN01376D.
(10) Gondikas, A. P.; Kammer, F. von der; Reed, R. B.; Wagner, S.; Ranville, J. F.; Hofmann, T. Release of TiO2 Nanoparticles from Sunscreens into Surface Waters: A One-Year Survey at the Old Danube Recreational Lake. Environ. Sci. Technol. 2014, 48 (10), 5415–5422. https://doi.org/10.1021/es405596y.
(11) Donovan, A. R.; Adams, C. D.; Ma, Y.; Stephan, C.; Eichholz, T.; Shi, H. Single Particle ICP-MS Characterization of Titanium Dioxide, Silver, and Gold Nanoparticles during Drinking Water Treatment. Chemosphere 2016, 144, 148–153. https://doi.org/10.1016/j.chemosphere.2015.07.081.
(12) Venkatesan, A. K.; Reed, R. B.; Lee, S.; Bi, X.; Hanigan, D.; Yang, Y.; Ranville, J. F.; Herckes, P.; Westerhoff, P. Detection and Sizing of Ti-Containing Particles in Recreational Waters Using Single Particle ICP-MS. Bull Environ Contam Toxicol 2018, 100 (1), 120–126. https://doi.org/10.1007/s00128-017-2216-1.
(13) J. Clark, N.; Boyle, D.; P. Eynon, B.; D. Handy, R. Dietary Exposure to Silver Nitrate Compared to Two Forms of Silver Nanoparticles in Rainbow Trout: Bioaccumulation Potential with Minimal Physiological Effects. Environmental Science: Nano 2019, 6 (5), 1393–1405. https://doi.org/10.1039/C9EN00261H.
(14) Test No. 305: Bioaccumulation in Fish: Aqueous and Dietary Exposure https://www.oecd-ilibrary.org/environment/test-no-305-bioaccumulation-in-fish-aqueous-and-dietary-exposure_9789264185296-en (accessed Jun 29, 2020).
(15) Selck, H.; Handy, R. D.; Fernandes, T. F.; Klaine, S. J.; Petersen, E. J. Nanomaterials in the Aquatic Environment: A European Union–United States Perspective on the Status of Ecotoxicity Testing, Research Priorities, and Challenges Ahead. Environmental Toxicology and Chemistry 2016, 35 (5), 1055–1067. https://doi.org/10.1002/etc.3385.
(16) Petersen, E. J.; Diamond, S. A.; Kennedy, A. J.; Goss, G. G.; Ho, K.; Lead, J.; Hanna, S. K.; Hartmann, N. B.; Hund-Rinke, K.; Mader, B.; Manier, N.; Pandard, P.; Salinas, E. R.; Sayre, P. Adapting OECD Aquatic Toxicity Tests for Use with Manufactured Nanomaterials: Key Issues and Consensus Recommendations. Environ. Sci. Technol. 2015, 49 (16), 9532–9547. https://doi.org/10.1021/acs.est.5b00997.
(17) Kühnel, D.; Nickel, C. The OECD Expert Meeting on Ecotoxicology and Environmental Fate — Towards the Development of Improved OECD Guidelines for the Testing of Nanomaterials. Science of The Total Environment 2014, 472, 347–353. https://doi.org/10.1016/j.scitotenv.2013.11.055.
(18) D. Handy, R.; Ahtiainen, J.; María Navas, J.; Goss, G.; J. Bleeker, E. A.; Kammer, F. von der. Proposal for a Tiered Dietary Bioaccumulation Testing Strategy for Engineered Nanomaterials Using Fish. Environmental Science: Nano 2018, 5 (9), 2030–2046. https://doi.org/10.1039/C7EN01139C.
(19) Handy, R. D.; van den Brink, N.; Chappell, M.; Mühling, M.; Behra, R.; Dušinská, M.; Simpson, P.; Ahtiainen, J.; Jha, A. N.; Seiter, J.; Bednar, A.; Kennedy, A.; Fernandes, T. F.; Riediker, M. Practical Considerations for Conducting Ecotoxicity Test Methods with Manufactured Nanomaterials: What Have We Learnt so Far? Ecotoxicology 2012, 21 (4), 933–972. https://doi.org/10.1007/s10646-012-0862-y.
(20) Hou, W.-C.; Westerhoff, P.; Posner, J. D. Biological Accumulation of Engineered Nanomaterials: A Review of Current Knowledge. Environ. Sci.: Processes Impacts 2012, 15 (1), 103–122. https://doi.org/10.1039/C2EM30686G.
(21) Petersen, E. J.; Mortimer, M.; Burgess, R. M.; Handy, R.; Hanna, S.; Ho, K. T.; Johnson, M.; Loureiro, S.; Selck, H.; Scott-Fordsmand, J. J.; Spurgeon, D.; Unrine, J.; Brink, N. W. van den; Wang, Y.; White, J.; Holden, P. Strategies for Robust and Accurate Experimental Approaches to Quantify Nanomaterial Bioaccumulation across a Broad Range of Organisms. Environ. Sci.: Nano 2019, 6 (6), 1619–1656. https://doi.org/10.1039/C8EN01378K.
(22) Griffitt, R. J.; Hyndman, K.; Denslow, N. D.; Barber, D. S. Comparison of Molecular and Histological Changes in Zebrafish Gills Exposed to Metallic Nanoparticles. Toxicol Sci 2009, 107 (2), 404–415. https://doi.org/10.1093/toxsci/kfn256.
(23) Yu, L.; Fang, T.; Xiong, D.; Zhu, W.; Sima, X. Comparative Toxicity of Nano-ZnO and Bulk ZnO Suspensions to Zebrafish and the Effects of Sedimentation, ˙OH Production and Particle Dissolution in Distilled Water. J. Environ. Monit. 2011, 13 (7), 1975–1982. https://doi.org/10.1039/C1EM10197H.
(24) Cambier, S.; Røgeberg, M.; Georgantzopoulou, A.; Serchi, T.; Karlsson, C.; Verhaegen, S.; Iversen, T.-G.; Guignard, C.; Kruszewski, M.; Hoffmann, L.; Audinot, J.-N.; Ropstad, E.; Gutleb, A. C. Fate and Effects of Silver Nanoparticles on Early Life-Stage Development of Zebrafish (Danio Rerio) in Comparison to Silver Nitrate. Science of The Total Environment 2018, 610–611, 972–982. https://doi.org/10.1016/j.scitotenv.2017.08.115.
(25) Boyle, D.; Goss, G. G. Effects of Silver Nanoparticles in Early Life-Stage Zebrafish Are Associated with Particle Dissolution and the Toxicity of Soluble Silver. NanoImpact 2018, 12, 1–8. https://doi.org/10.1016/j.impact.2018.08.006.
(26) Liu, H.; Wang, X.; Wu, Y.; Hou, J.; Zhang, S.; Zhou, N.; Wang, X. Toxicity Responses of Different Organs of Zebrafish (Danio Rerio) to Silver Nanoparticles with Different Particle Sizes and Surface Coatings. Environmental Pollution 2019, 246, 414–422. https://doi.org/10.1016/j.envpol.2018.12.034.
(27) Ladhar, C.; Geffroy, B.; Cambier, S.; Treguer-Delapierre, M.; Durand, E.; Brèthes, D.; Bourdineaud, J.-P. Impact of Dietary Cadmium Sulphide Nanoparticles on Danio Rerio Zebrafish at Very Low Contamination Pressure. Nanotoxicology 2014, 8 (6), 676–685. https://doi.org/10.3109/17435390.2013.822116.
(28) El Basuini, M. F.; El-Hais, A. M.; Dawood, M. A. O.; Abou-Zeid, A. E.-S.; EL-Damrawy, S. Z.; Khalafalla, M. M. E.-S.; Koshio, S.; Ishikawa, M.; Dossou, S. Effect of Different Levels of Dietary Copper Nanoparticles and Copper Sulfate on Growth Performance, Blood Biochemical Profiles, Antioxidant Status and Immune Response of Red Sea Bream (Pagrus Major). Aquaculture 2016, 455, 32–40. https://doi.org/10.1016/j.aquaculture.2016.01.007.
(29) Chupani, L.; Zusková, E.; Niksirat, H.; Panáček, A.; Lünsmann, V.; Haange, S.-B.; von Bergen, M.; Jehmlich, N. Effects of Chronic Dietary Exposure of Zinc Oxide Nanoparticles on the Serum Protein Profile of Juvenile Common Carp (Cyprinus Carpio L.). Science of The Total Environment 2017, 579, 1504–1511. https://doi.org/10.1016/j.scitotenv.2016.11.154.
(30) Clark, N. J.; Clough, R.; Boyle, D.; Handy, R. D. Development of a Suitable Detection Method for Silver Nanoparticles in Fish Tissue Using Single Particle ICP-MS. Environ. Sci.: Nano 2019, 6 (11), 3388–3400. https://doi.org/10.1039/C9EN00547A.
(31) Pace, H. E.; Rogers, N. J.; Jarolimek, C.; Coleman, V. A.; Higgins, C. P.; Ranville, J. F. Determining Transport Efficiency for the Purpose of Counting and Sizing Nanoparticles via Single Particle Inductively Coupled Plasma Mass Spectrometry. Anal. Chem. 2011, 83 (24), 9361–9369. https://doi.org/10.1021/ac201952t.
(32) Lee, S.; Bi, X.; Reed, R. B.; Ranville, J. F.; Herckes, P.; Westerhoff, P. Nanoparticle Size Detection Limits by Single Particle ICP-MS for 40 Elements. Environ. Sci. Technol. 2014, 48 (17), 10291–10300. https://doi.org/10.1021/es502422v.
(33) Laborda, F.; Bolea, E.; Cepriá, G.; Gómez, M. T.; Jiménez, M. S.; Pérez-Arantegui, J.; Castillo, J. R. Detection, Characterization and Quantification of Inorganic Engineered Nanomaterials: A Review of Techniques and Methodological Approaches for the Analysis of Complex Samples. Analytica Chimica Acta 2016, 904, 10–32. https://doi.org/10.1016/j.aca.2015.11.008.
(34) Mozhayeva, D.; Engelhard, C. A Critical Review of Single Particle Inductively Coupled Plasma Mass Spectrometry – A Step towards an Ideal Method for Nanomaterial Characterization. J. Anal. At. Spectrom. 2019. https://doi.org/10.1039/C9JA00206E.
(35) Taboada-López, M. V.; Iglesias-López, S.; Herbello-Hermelo, P.; Bermejo-Barrera, P.; Moreda-Piñeiro, A. Ultrasound Assisted Enzymatic Hydrolysis for Isolating Titanium Dioxide Nanoparticles from Bivalve Mollusk before Sp-ICP-MS. Analytica Chimica Acta 2018, 1018, 16–25. https://doi.org/10.1016/j.aca.2018.02.075.
(36) Taboada-López, M. V.; Alonso-Seijo, N.; Herbello-Hermelo, P.; Bermejo-Barrera, P.; Moreda-Piñeiro, A. Determination and Characterization of Silver Nanoparticles in Bivalve Molluscs by Ultrasound Assisted Enzymatic Hydrolysis and Sp-ICP-MS. Microchemical Journal 2019, 148, 652–660. https://doi.org/10.1016/j.microc.2019.05.023.
(37) Meermann, B.; Nischwitz, V. ICP-MS for the Analysis at the Nanoscale – a Tutorial Review. J. Anal. At. Spectrom. 2018, 33 (9), 1432–1468. https://doi.org/10.1039/C8JA00037A.
(38) COMMUNICATION FROM THE COMMISSION TO THE EUROPEAN PARLIAMENT, THE COUNCIL AND THE EUROPEAN ECONOMIC AND SOCIAL COMMITTEE - Second Regulatory Review on Nanomaterials. 15.
(39) Nanomaterials in REACH and CLP - Environment - European Commission https://ec.europa.eu/environment/chemicals/nanotech/reach-clp/index_en.htm (accessed Jul 4, 2020).
(40) Katz, L. M.; Dewan, K.; Bronaugh, R. L. Nanotechnology in Cosmetics. Food and Chemical Toxicology 2015, 85, 127–137. https://doi.org/10.1016/j.fct.2015.06.020.
(41) Avramescu, M.-L.; Rasmussen, P. E.; Chénier, M.; Gardner, H. D. Influence of PH, Particle Size and Crystal Form on Dissolution Behaviour of Engineered Nanomaterials. Environ Sci Pollut Res 2017, 24 (2), 1553–1564. https://doi.org/10.1007/s11356-016-7932-2.
(42) Garner, K. L.; Suh, S.; Keller, A. A. Assessing the Risk of Engineered Nanomaterials in the Environment: Development and Application of the NanoFate Model. Environ. Sci. Technol. 2017, 51 (10), 5541–5551. https://doi.org/10.1021/acs.est.6b05279.
(43) Garner, K. L.; Qin, Y.; Cucurachi, S.; Suh, S.; Keller, A. A. Linking Exposure and Kinetic Bioaccumulation Models for Metallic Engineered Nanomaterials in Freshwater Ecosystems. ACS Sustainable Chem. Eng. 2018, 6 (10), 12684–12694. https://doi.org/10.1021/acssuschemeng.8b01691.
(44) López-Serrano, A.; Olivas, R. M.; Landaluze, J. S.; Cámara, C. Nanoparticles: A Global Vision. Characterization, Separation, and Quantification Methods. Potential Environmental and Health Impact. Anal. Methods 2013, 6 (1), 38–56. https://doi.org/10.1039/C3AY40517F.
(45) Noonan, G. O.; Whelton, A. J.; Carlander, D.; Duncan, T. V. Measurement Methods to Evaluate Engineered Nanomaterial Release from Food Contact Materials. Comprehensive Reviews in Food Science and Food Safety 2014, 13 (4), 679–692. https://doi.org/10.1111/1541-4337.12079.
(46) Luykx, D. M. A. M.; Peters, R. J. B.; van Ruth, S. M.; Bouwmeester, H. A Review of Analytical Methods for the Identification and Characterization of Nano Delivery Systems in Food. J. Agric. Food Chem. 2008, 56 (18), 8231–8247. https://doi.org/10.1021/jf8013926.
(47) Rawle, A. F. Basic of principles of particle-size analysis /paper/Basic-of-principles-of-particle-size-analysis-Rawle/939a02a3b0fc50d595a5e20930c088a2abb9353c (accessed Jul 4, 2020).
(48) Filipe, V.; Hawe, A.; Jiskoot, W. Critical Evaluation of Nanoparticle Tracking Analysis (NTA) by NanoSight for the Measurement of Nanoparticles and Protein Aggregates. Pharm Res 2010, 27 (5), 796–810. https://doi.org/10.1007/s11095-010-0073-2.
(49) Mudalige, T. K.; Qu, H.; Linder, S. W. Asymmetric Flow-Field Flow Fractionation Hyphenated ICP-MS as an Alternative to Cloud Point Extraction for Quantification of Silver Nanoparticles and Silver Speciation: Application for Nanoparticles with a Protein Corona. Anal. Chem. 2015, 87 (14), 7395–7401. https://doi.org/10.1021/acs.analchem.5b01592.
(50) Abdolahpur Monikh, F.; Chupani, L.; Zusková, E.; Peters, R.; Vancová, M.; Vijver, M. G.; Porcal, P.; Peijnenburg, W. J. G. M. Method for Extraction and Quantification of Metal-Based Nanoparticles in Biological Media: Number-Based Biodistribution and Bioconcentration. Environ. Sci. Technol. 2019, 53 (2), 946–953. https://doi.org/10.1021/acs.est.8b03715.
(51) Abdolahpur Monikh, F.; Chupani, L.; Vijver, M. G.; Vancová, M.; Peijnenburg, W. J. G. M. Analytical Approaches for Characterizing and Quantifying Engineered Nanoparticles in Biological Matrices from an (Eco)Toxicological Perspective: Old Challenges, New Methods and Techniques. Science of The Total Environment 2019, 660, 1283–1293. https://doi.org/10.1016/j.scitotenv.2019.01.105.
(52) Avramescu, M.-L.; Rasmussen, P. E.; Chénier, M.; Gardner, H. D. Influence of PH, Particle Size and Crystal Form on Dissolution Behaviour of Engineered Nanomaterials. Environ Sci Pollut Res 2017, 24 (2), 1553–1564. https://doi.org/10.1007/s11356-016-7932-2.
(53) European Chemicals Agency. Guidance on Information Requirements and Chemical Safety Assessment Chapter R.7b: Endpoint Specific Guidance.; 2017.
(54) Sung, H. K.; Jo, E.; Kim, E.; Yoo, S.; Lee, J.; Kim, P.; Kim, Y.; Eom, I.-C. Analysis of Gold and Silver Nanoparticles Internalized by Zebrafish (Danio Rerio) Using Single Particle-Inductively Coupled Plasma-Mass Spectrometry. Chemosphere 2018, 209, 815–822. https://doi.org/10.1016/j.chemosphere.2018.06.149.
(55) Loeschner, K.; Brabrand, M. S. J.; Sloth, J. J.; Larsen, E. H. Use of Alkaline or Enzymatic Sample Pretreatment Prior to Characterization of Gold Nanoparticles in Animal Tissue by Single-Particle ICPMS. Anal Bioanal Chem 2014, 406 (16), 3845–3851. https://doi.org/10.1007/s00216-013-7431-y.
(56) Gray, E. P.; Coleman, J. G.; Bednar, A. J.; Kennedy, A. J.; Ranville, J. F.; Higgins, C. P. Extraction and Analysis of Silver and Gold Nanoparticles from Biological Tissues Using Single Particle Inductively Coupled Plasma Mass Spectrometry. Environ. Sci. Technol. 2013, 47 (24), 14315–14323. https://doi.org/10.1021/es403558c.
(57) Vidmar, J.; Buerki-Thurnherr, T.; Loeschner, K. Comparison of the Suitability of Alkaline or Enzymatic Sample Pre-Treatment for Characterization of Silver Nanoparticles in Human Tissue by Single Particle ICP-MS. J. Anal. At. Spectrom. 2018, 33 (5), 752–761. https://doi.org/10.1039/C7JA00402H.
(58) Kuehr, S.; Meisterjahn, B.; Schröder, N.; Knopf, B.; Völker, D.; Schwirn, K.; Schlechtriem, C. Testing the Bioaccumulation of Manufactured Nanomaterials in the Freshwater Bivalve Corbicula Fluminea Using a New Test Method. Environmental Science: Nano 2020, 7 (2), 535–553. https://doi.org/10.1039/C9EN01112A.
(59) Peters, R. J.; Rivera, Z. H.; van Bemmel, G.; Marvin, H. J.; Weigel, S.; Bouwmeester, H. Development and Validation of Single Particle ICP-MS for Sizing and Quantitative Determination of Nano-Silver in Chicken Meat. Analytical and bioanalytical chemistry 2014, 406 (16), 3875–3885.
(60) Kollander, B.; Widemo, F.; Ågren, E.; Larsen, E. H.; Loeschner, K. Detection of Lead Nanoparticles in Game Meat by Single Particle ICP-MS Following Use of Lead-Containing Bullets. Anal Bioanal Chem 2017, 409 (7), 1877–1885. https://doi.org/10.1007/s00216-016-0132-6.
(61) Ramsden, C. S.; Smith, T. J.; Shaw, B. J.; Handy, R. D. Dietary Exposure to Titanium Dioxide Nanoparticles in Rainbow Trout, (Oncorhynchus Mykiss): No Effect on Growth, but Subtle Biochemical Disturbances in the Brain. Ecotoxicology 2009, 18 (7), 939–951. https://doi.org/10.1007/s10646-009-0357-7.
(62) Connolly, M.; Fernández, M.; Conde, E.; Torrent, F.; Navas, J. M.; Fernández-Cruz, M. L. Tissue Distribution of Zinc and Subtle Oxidative Stress Effects after Dietary Administration of ZnO Nanoparticles to Rainbow Trout. Science of The Total Environment 2016, 551–552, 334–343. https://doi.org/10.1016/j.scitotenv.2016.01.186.
(63) Skjolding, L. M.; Winther-Nielsen, M.; Baun, A. Trophic Transfer of Differently Functionalized Zinc Oxide Nanoparticles from Crustaceans (Daphnia Magna) to Zebrafish (Danio Rerio). Aquatic Toxicology 2014, 157, 101–108. https://doi.org/10.1016/j.aquatox.2014.10.005.
(64) European Chemicals Agency. Guidance on Information Requirements and Chemical Safety Assessment Chapter R.7c: Endpoint Specific Guidance.; 2017.
(65) Laborda, F.; Bolea, E.; Jiménez-Lamana, J. Single Particle Inductively Coupled Plasma Mass Spectrometry: A Powerful Tool for Nanoanalysis. Anal. Chem. 2014, 86 (5), 2270–2278. https://doi.org/10.1021/ac402980q.
(66) Mitrano, D. M.; Lesher, E. K.; Bednar, A.; Monserud, J.; Higgins, C. P.; Ranville, J. F. Detecting Nanoparticulate Silver Using Single-Particle Inductively Coupled Plasma–Mass Spectrometry. Environmental Toxicology and Chemistry 2012, 31 (1), 115–121. https://doi.org/10.1002/etc.719.
(67) Erickson, H. P. Size and Shape of Protein Molecules at the Nanometer Level Determined by Sedimentation, Gel Filtration, and Electron Microscopy. Biol Proced Online 2009, 11, 32–51. https://doi.org/10.1007/s12575-009-9008-x.
(68) European Chemicals Agency. Guidance on Information Requirements and Chemical Safety Assessment Chapter R.11: PBT and VPvB Assessment.; 2017.
(69) Xiao, B.; Wang, X.; Yang, J.; Wang, K.; Zhang, Y.; Sun, B.; Zhang, T.; Zhu, L. Bioaccumulation Kinetics and Tissue Distribution of Silver Nanoparticles in Zebrafish: The Mechanisms and Influence of Natural Organic Matter. Ecotoxicology and Environmental Safety 2020, 194, 110454. https://doi.org/10.1016/j.ecoenv.2020.110454.
(70) Sayadi, M. H.; Mansouri, B.; Shahri, E.; Tyler, C. R.; Shekari, H.; Kharkan, J. Exposure Effects of Iron Oxide Nanoparticles and Iron Salts in Blackfish (Capoeta Fusca): Acute Toxicity, Bioaccumulation, Depuration, and Tissue Histopathology. Chemosphere 2020, 247, 125900. https://doi.org/10.1016/j.chemosphere.2020.125900.
校內:2025-08-28公開