| 研究生: |
呂淳龍 Lu, Chun-Lung |
|---|---|
| 論文名稱: |
雙邊貼附壓電材料片之Timoshenko樑的電能儲存電路設計 Circuit Design of Storing Energy through Timoshenko Beam with Bilateral Surface Mounted Piezoelectric Layers |
| 指導教授: |
王榮泰
Wang, Rong-Tai |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 工程科學系 Department of Engineering Science |
| 論文出版年: | 2016 |
| 畢業學年度: | 104 |
| 語文別: | 中文 |
| 論文頁數: | 85 |
| 中文關鍵詞: | 壓電材料 、電路設計 、有限元素法 |
| 外文關鍵詞: | Timoshenko beam, Finite element method |
| 相關次數: | 點閱:77 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
壓電材料的應用越來越廣泛,但其產生的效能及效率還不足以顛覆目前能源利用的型態,為了達到此目標至今仍有許多研究在如何有效收集能量及改善電路設計。
本研究是針對一根附有上下壓電片的Timoshenko樑,首先以有限元素法探討此懸臂樑承受外力作用所呈現的動態行為,再設計一個有效的充電電路將壓電片產生的電能有效的儲存起來,最後根據理論成果分與實作成果作驗證,討論貼附位置對電壓產生的影響。
當此樑受到外力作用時,上下表面貼附的壓電片會因為變形的作用產生機械能轉換電能的行為,此電能為一交流電源,為了使其應用在廣泛電器裝置中,本研究設計一組電路將產生的交流電經過一系列轉換,最後達到一般電器中使用的標準。
A pair of piezoelectric sheets collocated bond on the Timoshenko beam is presented in the study. The finite element method is adopted to investigate the dynamic behavior of this Timoshenko beam subjected to an external force. An effective charging circuit is designed to store the electrical energy generated from the piezoelectric sheet. The results obtained from theoretic calculations will be compared with the actual measurements. Furthermore, the effects of attached position on the generated voltage will also be discussed.
Keywords: Timoshenko beam, Finite element method
1. J. A. Paradiso and T. Starner, “Energy scavenging for mobile and wireless electronics,” IEEE Pervasive Computing, vol. 4, pp. 18-27, Jan-Mar 2005.
2. Curie, P., “Radioactive Substances, Especially Radium,” Nobel Lecture, June 6, 1905.
3. H. A. Kunkel, S. Locke, and B. Pikeroen, “Finite-Element Analysis of Vibrational Modes in Piezoelectric Ceramic Disks,” IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, Vol. 37, pp. 316–328, July 1990.
4. H. S. Tzou and G. C. Wang, “Distributed Structural Dynamics Control of Flexible Manipulators-I. Structural Dynamics and Viscoelastic Actuator,” Computers and Structures, Vol.35, pp. 669-677, 1990.
5. Angela Triplett and D. Dane Quinn, “The Effect of Nonlinear Piezoelectric Coupling on Vibration-based Energy Harvesting,” Journal of Intelligent Material Systems and Structures, Vol. 20, No. 16, November, 2009
6. Q. Wang, and S. T. Quek, “A Model for the Analysis of Beams with Embedded Piezoelectric Layer,” Journal of Intelligent Material System and Structures, Vol. 13, pp.61-70, 2002.
7. H. A. Sodano, D. J. Inman and G. Park, “A Review of Power Harvesting from Vibration Using Piezoelectric Materials,” The Shock and Vibration Digest, Vol. 36, No. 3, pp. 197-205, May. 2004.
8. D. H. Robbins and J. N. Reddy, “Analysis of Piezoelectrically Actuated Beams Using a Layer-wise Displacement Theory,” Computers and Structures, Vol. 41, No. 2, pp. 265-279, 1991.
9. J. G. Smits and A. Ballato, “Dynamic Admittance Matrix of Cantilever Bimorphs,” Journal of Microelectromechanical System, Vol. 3, No. 3, pp. 105-112, 1994.
10. S. Brooks and P. Heyliger, “Static Behavior of Piezoelectric Laminates with Distributed and Patched Actuators,” Journal of intelligent Material Systems and Structures, Vol. 5, pp. 635-646, 1994.
11. C. Q. Chen, X. M. Wang and Y. P. Shen, “Finite Element Approach of Vibration Control Using Self-sensing Piezoelectric Actuators, ” Computers and Structures, Vol. 60, No. 3, pp. 505-512, 1996.
12. X. D. Zhang and C. T. Sun, “Formulation of an Adaptive Sandwich Beam,” Smart Materials and Structures, Vol. 5, No. 6, pp. 814-823, 1996.
13. Yang, J. S. and Batra, R. C., “Free Vibrations of a Piezoelectric Body,” Journal of Elasticity, 34(3), pp. 239-254, 1994.
14. I. Y. Shen, “A Variational Formulation, A Work-energy Relation and Damping Mechanisms of Active Constrained Layer Treatments,” Journal of Vibration and Acoustics, Vol. 199, No. 2, pp. 192-199, 1997.
15. G. P. Dude, S. Kapuria, and P. C. Dumir, “Exact Piezothermoelastic Solution of Simply-Supported Orthotropic Flat Panel in Cylindrical Bending,” Journal of Intelligent Material Systems and Structures, Vol. 38, No. 11, pp.1161-1177, 1996.
16. Roundy S and Wright P K 2004 “A Piezoelectric Vibration based Generator for Wireless Electronics,” Smart Mater and Structures, 13 1131-42.
17. L.R. Clare and S. G. Burrow, “Power Conditioning for Energy Harvesting, in Proc. SPIE Active Passive Smart Struct, ” Integr. Syst, San Diego, CA, 2008, pp. 69280A-1-69280A-13
18. T. Lehmann and Y. Moghe, “On Chip Active Power Rectifiers for Biomedical Applications,” Proc. IEEE Int. Symp. Circuits Syst., Kobe, Japan, May 2005, Vol.1, pp.732-735.
19. Liang J R and Liao W H 2009 “Piezoelectric Energy Harvesting and Dissipation on Structural Damping,” J. Intell. Mater. Syst. Struct. 20 515-27
20. G. K Ottman, H. F. Hofmann, and G. A. Lesieutre, “Optimized Piezoelectric Energy Harvesting Circuit Using Step down Converter in Discontinuous Conduction Mode,” IEEE Trans. Power Electron, Vol.18, pp. 696-703, Mar. 2003
21. J. G. Smits, “Design Consideration of a Piezoelectric-on-silicon Microrobot,” Sensor and Actuators, A35, pp. 129-135, 1992.
22. 林蕙君, 舒貽忠,壓電振能截取簡介國立台灣大學應用力學研究所.
23. L. R. Clare and S. G. Burrow, "Power Conditioning for Energy Harvesting", Proc. SPIE Active Passive Smart Struct. Integr. Syst, pp. 69280A-1-69280A-13, 2008
24. A. Sedra and K. C. Smith, Microelectronic Circuits, 6th ed. London, U.K.: Oxford Univ. Press, 2009.
25. 王宏益, Design of Energy Harvesting Circuit on Timoshenko Beam with Surface Mounted Piezoelectric Material, 國立成功大學碩士論文, January, 2016
校內:2020-07-02公開