| 研究生: |
陳心如 Chen, Xin-Ru |
|---|---|
| 論文名稱: |
基本面因素與深度學習對台灣股票報酬率預測分析 The analysis of Taiwan stock return predictions: fundamental analysis and deep learning approach |
| 指導教授: |
王澤世
Wang, Tse-Shih |
| 學位類別: |
碩士 Master |
| 系所名稱: |
管理學院 - 財務金融研究所 Graduate Institute of Finance |
| 論文出版年: | 2018 |
| 畢業學年度: | 106 |
| 語文別: | 中文 |
| 論文頁數: | 52 |
| 中文關鍵詞: | 股票報酬率預測 、基本面 、深度學習 、DBN模型 |
| 外文關鍵詞: | Stock Return Forecast, The Impact of Fundamental, Deep Learning, DBN Model |
| 相關次數: | 點閱:103 下載:5 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
股市是高度複雜化的非線性動態變化的系統,預測股市變化是具有極大挑戰性和不准確性的,傳統的數理統計方式可能使預測效果不是很顯著。深度學習(deep learning)是深層非線性網絡結構,可以捕捉那些非線性的特徵與訊息,使預測精度提高。
本研究目的為探討台灣股票報酬率的影響因素與預測能力,採用基本面資料包括Fama-French五因子相關因素、動量因素、財務比率,總體經濟因素等四個方面選取股價報酬率預測的33個因素作為主要變量進行實證研究。
在基本面的檢驗效果上,總體上來說,除了總體經濟因素的變量呈現顯著負相關,其他三個方面因素變量大多呈現顯著正相關,表示公司的經營能力,財務狀況等基本面的因素,會對預測股票報酬率有著顯著的正向預測能力。
在預測方面,我們分別以傳統panel data做線性迴歸與深度學習的DBN模型進行分析與預測。通過預測實驗我們可以發現, DBN模型對於股價報酬率未來的漲跌預測表現比傳統的線性迴歸表現更優異。傳統線性迴歸的趨勢預測準確率平均為47%,而DBN模型的趨勢預測準確率平均為67%。但是DBN模型在預測精確度不高,且在短中長期表現不夠穩定,同時DBN模型訓練耗時較長。
我們基於傳統線性迴歸與非線性迴歸的DBN模型的對比分析,兩者在具體預測股票報酬率中的表現,進一步分析其產生的原因,並對未來作出展望。
In this paper, we study the fundamental factors that may affect Taiwan stocks returns, using OLS and deep learning to predict future stock returns. From 2000 to 2017, we selected 802 listed companies in Taiwan, and select factors from 4 aspects Fama-French, momentum, financial ratio and Macroeconomics for empirical research.
As a result of the fundamentals, we found out that there are 8 factors that have a significant impact on long-term and short-term forecasted rates of return. In general, except for the Macroeconomics factors, other factors from rest of three aspects have a significant positive correlation, indicating that the company’s operating capabilities, financial status, and other fundamental factors will have a significant positive affect and predict stock returns.
For forecasting, we use traditional OLS model and DBN model of deep learning to forecast and analysis. We can find out that the DBN model performs better than the traditional linear regression on predicting the stock price return in the future. The average accuracy of traditional linear regression is 47 %, while the average accuracy of DBN model is 66 %. However, the error in the DBN model is not accurate, and it is not stable during the period. At the same time, the DBN model training takes a long time. Based on a comparative analysis of two, which performs in the specific prediction on stock returns, then further analyze the reasons for its occurrence and make an outlook for the future.
中文部分:
丁碧惠, & 曾家齊. (2005). 市場狀態與動能投資策略績效關聯性之研究. 台灣金融財務季刊, 6(4), 1-19.
于慎為. (2011). 價值型投資考量法人籌碼動能下的選股策略: 以臺灣股市為例.
池祥萱, 林煜恩, & 周賓凰. (2007). 基金績效持續與聰明錢效果: 台灣實證. 管理學報, 24(3), 307-330.
李春安, 羅進水, & 蘇永裕. (2006). 動能策略報酬, 投資人情緒與景氣循環之研究. 財務金融學刊, 14(2), 73-109.
廖培賢, & 鄭怡嵩. (2012). 資產替代性, 總體經濟政策宣告與股價的動態調整. 東吳經濟商學學報(第 78), 1-44.
蔡佩蓉, 王元章, & 張眾卓. (2009). 投資人情緒, 公司特徵與台灣股票報酬之研究. 經濟研究, 45(2), 273-322.
賴靖宜, 董澍琦, 楊聲勇, & 苗建華. (2011). 價值投資: 財務報表與公開資訊之應用.
韩立岩, & 伍燕然. (2007). 投资者情绪与 IPOs 之谜——抑价或者溢价. 管理世界(3), 51-61.
英文部分:
Abarbanell, J. S., & Bushee, B. J. (1998). Abnormal returns to a fundamental analysis strategy. Accounting Review, 19-45.
Abdullah, D. A., & Hayworth, S. C. (1993). Macroeconometrics of stock price fluctuations. Quarterly Journal of Business and Economics, 50-67.
Allen, D. E., & Rachim, V. S. (1996). Dividend policy and stock price volatility: Australian evidence. Applied financial economics, 6(2), 175-188.
Allen, N. J., & Meyer, J. P. (1996). Affective, Continuance, and Normative Commitment to the Organization: An Examination of Construct Validity. Journal of Vocational Behavior, 49(3), 252-276. doi:https://doi.org/10.1006/jvbe.1996.0043
Antoniou, C., Doukas, J. A., & Subrahmanyam, A. (2013). Cognitive dissonance, sentiment, and momentum. Journal of Financial and Quantitative Analysis, 48(1), 245-275.
Atiya, A., Talaat, N., & Shaheen, S. (1997). An efficient stock market forecasting model using neural networks. Paper presented at the Neural Networks, 1997., International Conference on.
Baker, M., & Wurgler, J. (2004). Appearing and disappearing dividends: The link to catering incentives. Journal of financial economics, 73(2), 271-288.
Baker, M., & Wurgler, J. (2006). Investor sentiment and the cross‐section of stock returns. The journal of Finance, 61(4), 1645-1680.
Ball, R., & Brown, P. (1968). An empirical evaluation of accounting income numbers. Journal of accounting research, 159-178.
Banz, R. W. (1981). The relationship between return and market value of common stocks. Journal of financial economics, 9(1), 3-18.
Barberis, N., Shleifer, A., & Vishny, R. (1998). A model of investor sentiment1. Journal of financial economics, 49(3), 307-343.
Baskin, J. (1989a). Dividend policy and the volatility of common stocks. The Journal of Portfolio Management, 15(3), 19-25.
Baskin, J. (1989b). An empirical investigation of the pecking order hypothesis. Financial management, 26-35.
Bengio, Y., Lamblin, P., Popovici, D., & Larochelle, H. (2007). Greedy layer-wise training of deep networks. Paper presented at the Advances in neural information processing systems.
Bondt, D., Werner, F., & Thaler, R. H. (1987). Further evidence on investor overreaction and stock market seasonality. The journal of Finance, 42(3), 557-581.
Bondt, W. F., & Thaler, R. (1985). Does the stock market overreact? The journal of Finance, 40(3), 793-805.
Breusch, T. S., & Pagan, A. R. (1980). The Lagrange Multiplier Test and its Applications to Model Specification in Econometrics. The Review of Economic Studies, 47(1), 239-253. doi:10.2307/2297111
Brown, G. W., & Cliff, M. T. (2005). Investor sentiment and asset valuation. The Journal of Business, 78(2), 405-440.
Brown, P., & Kennelly, J. W. (1972). The informational content of quarterly earnings: An extension and some further evidence. The Journal of Business, 45(3), 403-415.
Capaul, C., Rowley, I., & Sharpe, W. F. (1993). International value and growth stock returns. Financial Analysts Journal, 49(1), 27-36.
Chen, N.-F., Roll, R., & Ross, S. A. (1986). Economic forces and the stock market. Journal of business, 383-403.
Choi, S. M., & Kim, H. (2014). Momentum effect as part of a market equilibrium. Journal of Financial and Quantitative Analysis, 49(1), 107-130.
Chui, A., Wei, K.-C., & Titman, S. (2000). Momentum, legal systems and ownership structure: An analysis of Asian stock markets.
Conrad, J., & Kaul, G. (1998). An anatomy of trading strategies. The Review of Financial Studies, 11(3), 489-519.
Cortes, C., & Vapnik, V. (1995). Support-vector networks. Machine Learning, 20(3), 273-297.
Daniel, K., Hirshleifer, D., & Subrahmanyam, A. (1998). Investor overconfidence, covariance risk, and predictors of securities returns. Journal of Finance, 53, 1839-1886.
Daniel, K., & Titman, S. (1999). Market efficiency in an irrational world. Financial Analysts Journal, 55(6), 28-40.
De Long, J. B., Shleifer, A., Summers, L. H., & Waldmann, R. J. (1990). Noise trader risk in financial markets. Journal of political economy, 98(4), 703-738.
Fama, E. F. (1970). Efficient capital markets: A review of theory and empirical work. The journal of Finance, 25(2), 383-417.
Fama, E. F. (1990). Term-structure forecasts of interest rates, inflation and real returns. Journal of Monetary Economics, 25(1), 59-76.
Fama, E. F., & French, K. R. (1992). The cross‐section of expected stock returns. The journal of Finance, 47(2), 427-465.
Fama, E. F., & French, K. R. (1993). Common risk factors in the returns on stocks and bonds. Journal of financial economics, 33(1), 3-56.
Fama, E. F., & French, K. R. (1995). Size and book‐to‐market factors in earnings and returns. The journal of Finance, 50(1), 131-155.
Fama, E. F., & French, K. R. (2016). Dissecting anomalies with a five-factor model. The Review of Financial Studies, 29(1), 69-103.
Fama, E. F., & MacBeth, J. D. (1973). Risk, return, and equilibrium: Empirical tests. Journal of political economy, 81(3), 607-636.
Fishman, M. B., Barr, D. S., & Loick, W. J. (1991). Using neural nets in market analysis. Technical Analysis of Stocks and Commodities, 9(4), 135-138.
Flannery, M. J., & Protopapadakis, A. A. (2002). Macroeconomic factors do influence aggregate stock returns. The review of financial studies, 15(3), 751-782.
Foster, G. (1977). Quarterly accounting data: Time-series properties and predictive-ability results. Accounting Review, 1-21.
Givoly, D., & Lakonishok, J. (1979). The information content of financial analysts' forecasts of earnings: Some evidence on semi-strong inefficiency. Journal of Accounting and Economics, 1(3), 165-185.
Gordon, M. J. (1959). Dividends, earnings, and stock prices. The review of economics and statistics, 99-105.
Granger, C. W., Huangb, B.-N., & Yang, C.-W. (2000). A bivariate causality between stock prices and exchange rates: evidence from recent Asianflu☆. The Quarterly Review of Economics and Finance, 40(3), 337-354.
Gregory, A., Tharyan, R., & Christidis, A. (2013). Constructing and testing alternative versions of the Fama–French and Carhart models in the UK. Journal of Business Finance & Accounting, 40(1-2), 172-214.
Griffin, J. M. (2002). Are the Fama and French factors global or country specific? The Review of Financial Studies, 15(3), 783-803.
Griffin, J. M., Ji, X., & Martin, J. S. (2003). Momentum investing and business cycle risk: Evidence from pole to pole. The journal of Finance, 58(6), 2515-2547.
Hausman, J. A. (1978). Specification Tests in Econometrics. Econometrica, 46(6), 1251-1271. doi:10.2307/1913827
Hausman, J. A., & Taylor, W. E. (1981). Panel data and unobservable individual effects. Econometrica: Journal of the Econometric Society, 1377-1398.
Hinton, G. E., & Salakhutdinov, R. R. (2006). Reducing the Dimensionality of Data with Neural Networks. science, 313(5786), 504-507. doi:10.1126/science.1127647
Hong, H., & Stein, J. C. (1999). A unified theory of underreaction, momentum trading, and overreaction in asset markets. The journal of Finance, 54(6), 2143-2184.
Hussainey, K., Oscar Mgbame, C., & Chijoke-Mgbame, A. M. (2011). Dividend policy and share price volatility: UK evidence. The Journal of risk finance, 12(1), 57-68.
Jegadeesh, N., & Titman, S. (1993). Returns to buying winners and selling losers: Implications for stock market efficiency. The journal of Finance, 48(1), 65-91.
Kamijo, K.-i., & Tanigawa, T. (1990). Stock price pattern recognition-a recurrent neural network approach. Paper presented at the Neural Networks, 1990., 1990 IJCNN International Joint Conference on.
Kato, K., & Schallheim, J. S. (1985). Seasonal and size anomalies in the Japanese stock market. Journal of Financial and Quantitative Analysis, 20(2), 243-260.
Keim, D. B. (1983). Size-related anomalies and stock return seasonality: Further empirical evidence. Journal of financial economics, 12(1), 13-32.
L’Her, J.-F., Masmoudi, T., & Suret, J.-M. (2004). Evidence to support the four-factor pricing model from the Canadian stock market. Journal of International Financial Markets, Institutions and Money, 14(4), 313-328.
Lakonishok, J., Shleifer, A., & Vishny, R. W. (1994). Contrarian investment, extrapolation, and risk. The journal of Finance, 49(5), 1541-1578.
Lam, K. S., Li, F. K., & So, S. M. (2010). On the validity of the augmented Fama and French’s (1993) model: evidence from the Hong Kong stock market. Review of Quantitative Finance and Accounting, 35(1), 89-111.
Lee, C., & Swaminathan, B. (2000). Price momentum and trading volume. The journal of Finance, 55(5), 2017-2069.
Lesmond, D. A., Schill, M. J., & Zhou, C. (2004). The illusory nature of momentum profits. Journal of financial economics, 71(2), 349-380.
Lintner, J. (1965). Security prices, risk, and maximal gains from diversification. The journal of Finance, 20(4), 587-615.
Markowitz, H. (1952). Portfolio selection. The journal of Finance, 7(1), 77-91.
Miller, M. H., & Modigliani, F. (1961). Dividend policy, growth, and the valuation of shares. the Journal of Business, 34(4), 411-433.
Mossin, J. (1966). Equilibrium in a capital asset market. Econometrica: Journal of the Econometric Society, 768-783.
Mukherjee, T. K., & Naka, A. (1995). Dynamic relations between macroeconomic variables and the Japanese stock market: an application of a vector error correction model. Journal of Financial Research, 18(2), 223-237.
Palley, T. I. (1995). The demand for money and non-GDP transactions. Economics Letters, 48(2), 145-154.
Park, S. (1997). Rationality of negative stock-price responses to strong economic activity. Financial Analysts Journal, 53(5), 52-56.
Patell, J. M., & Wolfson, M. A. (1984). The intraday speed of adjustment of stock prices to earnings and dividend announcements. Journal of financial economics, 13(2), 223-252.
Pesaran, H., & Timmermann, A. (1999). Model instability and choice of observation window.
Piotroski, J. D. (2000). Value investing: The use of historical financial statement information to separate winners from losers. Journal of Accounting Research, 1-41.
Reinganum, M. R. (1981). Misspecification of capital asset pricing: Empirical anomalies based on earnings' yields and market values. Journal of financial economics, 9(1), 19-46.
Ribeiro, B., & Lopes, N. (2011). Deep belief networks for financial prediction. Paper presented at the International Conference on Neural Information Processing.
Roll, R. (1977). A critique of the asset pricing theory's tests Part I: On past and potential testability of the theory. Journal of financial economics, 4(2), 129-176.
Roll, R., & Ross, S. A. (1980). An empirical investigation of the arbitrage pricing theory. The journal of Finance, 35(5), 1073-1103.
Rosenblatt, F. (1958). The perceptron: a probabilistic model for information storage and organization in the brain. Psychological review, 65(6), 386.
Rouwenhorst, K. G. (1998). International momentum strategies. The journal of Finance, 53(1), 267-284.
Rozeff, M. S. (1984). Dividend yields are equity risk premiums.
Rumelhart, D. E., Hinton, G. E., & Williams, R. J. (1986). Learning representations by back-propagating errors. nature, 323(6088), 533.
Schiereck, D., De Bondt, W., & Weber, M. (1999). Contrarian and momentum strategies in Germany. Financial Analysts Journal, 55(6), 104-116.
Serfling, M. A., & Miljkovic, D. (2011). Time series analysis of the relationships among (macro) economic variables, the dividend yield and the price level of the S&P 500 Index. Applied financial economics, 21(15), 1117-1134.
Sharpe, W. F. (1964). Capital asset prices: A theory of market equilibrium under conditions of risk. The journal of Finance, 19(3), 425-442.
Vuolteenaho, T. (2002). What Drives Firm‐Level Stock Returns? The journal of Finance, 57(1), 233-264.
White, H. (1988). Economic prediction using neural networks: The case of IBM daily stock returns.
Wongbangpo, P., & Sharma, S. C. (2002). Stock market and macroeconomic fundamental dynamic interactions: ASEAN-5 countries. Journal of Asian Economics, 13(1), 27-51.