| 研究生: |
徐政忠 Hsu, Cheng-Chung |
|---|---|
| 論文名稱: |
以微弧氧化處理的植體對於兔子骨整合能力的影響 The Effect of Titanium Implants with Micro-arc Oxidation Coatings on Osseointegration in Rabbits |
| 指導教授: |
李澤民
Lee, Tzer-Min 袁國 Yuan, Kuo |
| 學位類別: |
碩士 Master |
| 系所名稱: |
醫學院 - 口腔醫學研究所 Institute of Oral Medicine |
| 論文出版年: | 2013 |
| 畢業學年度: | 101 |
| 語文別: | 英文 |
| 論文頁數: | 51 |
| 中文關鍵詞: | 植體表面 、骨整合 、微弧氧化處理 、鍶 |
| 外文關鍵詞: | implant surfaces, osseointegration, micro-arc oxidation, strontium |
| 相關次數: | 點閱:144 下載:1 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
在今日,使用牙科植體來取代缺失的牙齒已變成一種常見的治療選擇。植體成功的關鍵在於其表面與周遭的齒槽骨能建立起骨整合。植體表面的設計、化學組成及型態會影響骨整合的程度。許多文獻指出噴砂加酸蝕處理(SLA)的表面有高骨頭與植體接觸的比例及高移除扭力值,可增進骨整合的能力。鍶(Sr)有抑制骨吸收及促進骨形成的能力,對於骨再生的應用是有助益的。鈦金屬經微弧氧化處理(MAO)具有極佳的生物相容性。故本實驗將觀察,在兔子脛骨植入以微弧氧化處理披覆鍶(MAO-Sr)之植體其骨整合情形並與噴砂加酸蝕處理(SLA)表面作比較。
將9隻紐西蘭兔的脛骨上植入不同表面處理之植體,分別是:微弧氧化處理(MAO)、微弧氧化處理披覆鍶(MAOSr)及噴砂加酸蝕處理(SLA)植體。植入後二星期,我們將先犧牲三隻兔子並利用逆轉錄聚合酶鏈式反應來觀察骨生成及骨吸收相關基因的表現量。植入後四星期,我們將犧牲其他兔子並切下脛骨製作切片來觀察植體與骨頭接觸情形,部份脛骨則進行功能性扭力測試。
在功能性扭力測試上三種表面處理之間並無顯著的差異性。然而在植體與骨頭接觸比例(BIC)方面,微弧氧化處理披覆鍶(MAOSr)的微植體有最好的結果。此外由逆轉錄聚合酶鏈式反應結果顯示經由MAOSr處理的微植體能提高骨生成相關基因的表現並同時抑制蝕骨相關基因的表現。
一言以蔽之,MAOSr的植體表面能促進骨生成並且抑制骨吸收。此外,相較於SLA及MAO的表面處理,MAOSr的表面處理對於鈦金屬微植體初期的骨整合反應是更有助益的。
Today, the use of dental implants has become a common treatment procedure in the replacement of missing teeth. The key of the success of dental implant is the establishment of osseointegration between implant surface and surrounding alveolar bone. The design, chemical composition and topography of the implant surface can influence the extent of osseointegration. Many literatures show that SLA(Sandblasted, Large grit, Acid-etched) surface improved osseointegration with a high percentage of bone-implant contact and high removal torque values. Strontium (Sr), which has the ability to inhibit bone resorption and stimulate bone formation, is beneficial for biological application for bone regeneration. The micro-arc oxidation (MAO) treatment of titanium (Ti) have a beneficial effect on the biocompatibility of the Ti implant. We aim to evaluate the response of implants with strontium coating by micro-arc oxidation (MAO-Sr) and compare the result of SLA surface in tibia of rabbits.
To prepare the animal study, 9 New Zealand white rabbits will be used. Three implants will be inserted into the each tibia of rabbits: MAO, MAOSr and SLA surface. At 2 weeks after implant insertion, 3 rabbits will be sacrificed. The tissue around implant will be removed for real-time polymerase chain reaction (RT-PCR). At 4 weeks after implant insertion, 6 rabbits will be sacrificed. The tibia will be removed for histomorphmetric analysis and removal torque assay. A bone-to-implant contact (BIC), functionally remove torque test and genes related to bone formation and resorption will be examined.
There was no significant differences in the removal torque values between SLA, MAO and MAOSr microimplants. However, the MAOSr microimplants had statistically significant higher bone-to-implant contact (BIC) than the SLA and MAO microimplants. There was no significant differences between the SLA and the MAO group. In RT-PCR analysis, increasing mRNA expression of osteogenesis-related genes (BSP, OCN, CD44 and CD73) was noted in the MAOSr group. In addition, down-regulating mRNA expression of the osteoclastogenesis-related genes (RANKL and RANK) and up-regulating the OPG expression was also noted in the MAOSr group.
The results indicate that the local delivery of strontium from the MAOSr surfaces can not only promote osteogenesis but also inhibit osteoclastogenesis by up-regulating the osteogenesis-related genes and down-regulating the osteoclastogenesis-related genes. The MAOSr surface can promote early osseointegration of the titanium microimplants comparing to the SLA and MAO surface.
Adell, R., Lekholm, U., Branemark, P.I., Lindhe, J., Rockler, B., Eriksson, B., Lindvall, A.M., Yoneyama, T., and Sbordone, L. (1985). Marginal tissue reactions at osseointegrated titanium fixtures. Swedish dental journal Supplement 28, 175-181.
Albrektsson, T. (2003). The host-implant interface: biology. The International journal of prosthodontics 16 Suppl, 29-30; discussion 47-51.
Albrektsson, T., and Jacobsson, M. (1987). Bone-metal interface in osseointegration. The Journal of prosthetic dentistry 57, 597-607.
Albrektsson, T., and Wennerberg, A. (2004). Oral implant surfaces: Part 1--review focusing on topographic and chemical properties of different surfaces and in vivo responses to them. The International journal of prosthodontics 17, 536-543.
Andersen, O.Z., Offermanns, V., Sillassen, M., Almtoft, K.P., Andersen, I.H., Sorensen, S., Jeppesen, C.S., Kraft, D.C., Bottiger, J., Rasse, M., et al. (2013). Accelerated bone ingrowth by local delivery of strontium from surface functionalized titanium implants. Biomaterials 34, 5883-5890.
Belić, M.B.a. (2010). Bone alkaline phosphatase, osteocalcin and C-terminal telopeptide as bone turnover markers in canine bitches. VETERINARSKI ARHIV 80, 705-713.
Boesze-Battaglia, E.E.G.a.K. (2007). The role of alkaline phosphatase in mineralization. Current Opinion in Orthopaedics 18, 444–448.
Bonnelye, E., Chabadel, A., Saltel, F., and Jurdic, P. (2008). Dual effect of strontium ranelate: stimulation of osteoblast differentiation and inhibition of osteoclast formation and resorption in vitro. Bone 42, 129-138.
Boyle, W.J., Simonet, W.S., and Lacey, D.L. (2003). Osteoclast differentiation and activation. Nature 423, 337-342.
Branemark, P.I. (1983). Osseointegration and its experimental background. The Journal of prosthetic dentistry 50, 399-410.
Brennan, T.C., Rybchyn, M.S., Green, W., Atwa, S., Conigrave, A.D., and Mason, R.S. (2009). Osteoblasts play key roles in the mechanisms of action of strontium ranelate. British journal of pharmacology 157, 1291-1300.
Buser, D., Schenk, R.K., Steinemann, S., Fiorellini, J.P., Fox, C.H., and Stich, H. (1991). Influence of surface characteristics on bone integration of titanium implants. A histomorphometric study in miniature pigs. Journal of biomedical materials research 25, 889-902.
Capuccini, C., Torricelli, P., Sima, F., Boanini, E., Ristoscu, C., Bracci, B., Socol, G., Fini, M., Mihailescu, I.N., and Bigi, A. (2008). Strontium-substituted hydroxyapatite coatings synthesized by pulsed-laser deposition: in vitro osteoblast and osteoclast response. Acta biomaterialia 4, 1885-1893.
Cochran, D.L., Schenk, R.K., Lussi, A., Higginbottom, F.L., and Buser, D. (1998). Bone response to unloaded and loaded titanium implants with a sandblasted and acid-etched surface: a histometric study in the canine mandible. Journal of biomedical materials research 40, 1-11.
Daculsi, G., Laboux, O., Malard, O., and Weiss, P. (2003). Current state of the art of biphasic calcium phosphate bioceramics. Journal of materials science Materials in medicine 14, 195-200.
Dahl, S.G., Allain, P., Marie, P.J., Mauras, Y., Boivin, G., Ammann, P., Tsouderos, Y., Delmas, P.D., and Christiansen, C. (2001). Incorporation and distribution of strontium in bone. Bone 28, 446-453.
Docheva, D., Haasters, F., and Schieker, M. (2008). Mesenchymal Stem Cells and Their Cell Surface Receptors. Current Rheumatology Reviews 4.
Dominici, M., Le Blanc, K., Mueller, I., Slaper-Cortenbach, I., Marini, F., Krause, D., Deans, R., Keating, A., Prockop, D., and Horwitz, E. (2006). Minimal criteria for defining multipotent mesenchymal stromal cells. The International Society for Cellular Therapy position statement. Cytotherapy 8, 315-317.
Eisenbarth, E., Meyle, J., Nachtigall, W., and Breme, J. (1996). Influence of the surface structure of titanium materials on the adhesion of fibroblasts. Biomaterials 17, 1399-1403.
Gotfredsen, K., Wennerberg, A., Johansson, C., Skovgaard, L.T., and Hjorting-Hansen, E. (1995). Anchorage of TiO2-blasted, HA-coated, and machined implants: an experimental study with rabbits. Journal of biomedical materials research 29, 1223-1231.
Johansson, C., and Albrektsson, T. (1987). Integration of screw implants in the rabbit: a 1-year follow-up of removal torque of titanium implants. The International journal of oral & maxillofacial implants 2, 69-75.
Johansson, C.B., and Albrektsson, T. (1991). A removal torque and histomorphometric study of commercially pure niobium and titanium implants in rabbit bone. Clinical oral implants research 2, 24-29.
Kieswetter, K., Schwartz, Z., Hummert, T.W., Cochran, D.L., Simpson, J., Dean, D.D., and Boyan, B.D. (1996). Surface roughness modulates the local production of growth factors and cytokines by osteoblast-like MG-63 cells. Journal of biomedical materials research 32, 55-63.
Klokkevold, P.R., Nishimura, R.D., Adachi, M., and Caputo, A. (1997). Osseointegration enhanced by chemical etching of the titanium surface. A torque removal study in the rabbit. Clinical oral implants research 8, 442-447.
Kung, K.-C., Lee, T.-M., Chen, J.-L., and Lui, T.-S. (2010a). Characteristics and biological responses of novel coatings containing strontium by micro-arc oxidation. Surface and Coatings Technology 205, 1714-1722.
Kung, K.-C., Lee, T.-M., and Lui, T.-S. (2010b). Bioactivity and corrosion properties of novel coatings containing strontium by micro-arc oxidation. Journal of Alloys and Compounds 508, 384-390.
Le Guehennec, L., Soueidan, A., Layrolle, P., and Amouriq, Y. (2007). Surface treatments of titanium dental implants for rapid osseointegration. Dental materials : official publication of the Academy of Dental Materials 23, 844-854.
Li, L.H., Kong, Y.M., Kim, H.W., Kim, Y.W., Kim, H.E., Heo, S.J., and Koak, J.Y. (2004). Improved biological performance of Ti implants due to surface modification by micro-arc oxidation. Biomaterials 25, 2867-2875.
Li, Y., Li, Q., Zhu, S., Luo, E., Li, J., Feng, G., Liao, Y., and Hu, J. (2010). The effect of strontium-substituted hydroxyapatite coating on implant fixation in ovariectomized rats. Biomaterials 31, 9006-9014.
Li, Y., Li, X., Song, G., Chen, K., Yin, G., and Hu, J. (2012). Effects of strontium ranelate on osseointegration of titanium implant in osteoporotic rats. Clinical oral implants research 23, 1038-1044.
Li, Y.W., Leong, J.C., Lu, W.W., Luk, K.D., Cheung, K.M., Chiu, K.Y., and Chow, S.P. (2000). A novel injectable bioactive bone cement for spinal surgery: a developmental and preclinical study. Journal of biomedical materials research 52, 164-170.
Lillie, R.D., Vacca, L., and Pizzolato, P. (1973). Hydroxy-ferric ions in histochemistry. Iron ion hydroxylation and histotopochemistry of tissue iron uptake. The journal of histochemistry and cytochemistry : official journal of the Histochemistry Society 21, 161-165.
Maimoun, L., Brennan, T.C., Badoud, I., Dubois-Ferriere, V., Rizzoli, R., and Ammann, P. (2010). Strontium ranelate improves implant osseointegration. Bone 46, 1436-1441.
Martin, J.Y., Schwartz, Z., Hummert, T.W., Schraub, D.M., Simpson, J., Lankford, J., Jr., Dean, D.D., Cochran, D.L., and Boyan, B.D. (1995). Effect of titanium surface roughness on proliferation, differentiation, and protein synthesis of human osteoblast-like cells (MG63). Journal of biomedical materials research 29, 389-401.
Navarro, M., Michiardi, A., Castano, O., and Planell, J.A. (2008). Biomaterials in orthopaedics. Journal of the Royal Society, Interface / the Royal Society 5, 1137-1158.
Park, J.W., Kim, H.K., Kim, Y.J., Jang, J.H., Song, H., and Hanawa, T. (2010). Osteoblast response and osseointegration of a Ti-6Al-4V alloy implant incorporating strontium. Acta biomaterialia 6, 2843-2851.
Park, J.W., Kim, Y.J., Jang, J.H., and Song, H. (2012a). Positive modulation of osteogenesis- and osteoclastogenesis-related gene expression with strontium-containing microstructured Ti implants in rabbit cancellous bone. Journal of biomedical materials research Part A 101, 298-306.
Park, J.W., Kim, Y.J., Jang, J.H., and Suh, J.Y. (2012b). Surface characteristics and primary bone marrow stromal cell response of a nanostructured strontium-containing oxide layer produced on a microrough titanium surface. Journal of biomedical materials research Part A 100, 1477-1487.
Park, J.W., Kwon, T.G., and Suh, J.Y. (2012c). The relative effect of surface strontium chemistry and super-hydrophilicity on the early osseointegration of moderately rough titanium surface in the rabbit femur. Clinical oral implants research 24, 706-709.
Pearce, A.I., Richards, R.G., Milz, S., Schneider, E., and Pearce, S.G. (2007). Animal models for implant biomaterial research in bone: a review. European cells & materials 13, 1-10.
Reginster, J.Y., Bruyere, O., and Collette, J. (2012). Strontium ranelate treatment increases osteoprotegerin serum levels in postmenopausal osteoporotic women. Bone 50, 1201-1202; author reply 1203-1204.
Roberts, W.E., Smith, R.K., Zilberman, Y., Mozsary, P.G., and Smith, R.S. (1984). Osseous adaptation to continuous loading of rigid endosseous implants. American journal of orthodontics 86, 95-111.
Roy, M., Bandyopadhyay, A., and Bose, S. (2011). Induction plasma sprayed Sr and Mg doped nano hydroxyapatite coatings on Ti for bone implant. Journal of biomedical materials research Part B, Applied biomaterials 99, 258-265.
Schieker, M., Pautke, C., Haasters, F., Schieker, J., Docheva, D., Bocker, W., Guelkan, H., Neth, P., Jochum, M., and Mutschler, W. (2007). Human mesenchymal stem cells at the single-cell level: simultaneous seven-colour immunofluorescence. Journal of anatomy 210, 592-599.
Sennerby, L., Thomsen, P., and Ericson, L.E. (1992). A morphometric and biomechanic comparison of titanium implants inserted in rabbit cortical and cancellous bone. The International journal of oral & maxillofacial implants 7, 62-71.
Sennerby, L., Wennerberg, A., and Pasop, F. (2001). A new microtomographic technique for non-invasive evaluation of the bone structure around implants. Clinical oral implants research 12, 91-94.
Shalabi, M.M., Gortemaker, A., Van't Hof, M.A., Jansen, J.A., and Creugers, N.H. (2006). Implant surface roughness and bone healing: a systematic review. Journal of dental research 85, 496-500.
Simonet, W.S., Lacey, D.L., Dunstan, C.R., Kelley, M., Chang, M.S., Luthy, R., Nguyen, H.Q., Wooden, S., Bennett, L., Boone, T., et al. (1997). Osteoprotegerin: a novel secreted protein involved in the regulation of bone density. Cell 89, 309-319.
Stadlinger, B., Pourmand, P., Locher, M.C., and Schulz, M.C. (2012). Systematic review of animal models for the study of implant integration, assessing the influence of material, surface and design. Journal of clinical periodontology 39 Suppl 12, 28-36.
Stein, G.S., and Lian, J.B. (1993). Molecular mechanisms mediating proliferation/differentiation interrelationships during progressive development of the osteoblast phenotype. Endocrine reviews 14, 424-442.
Stein, G.S., Lian, J.B., Stein, J.L., Van Wijnen, A.J., and Montecino, M. (1996). Transcriptional control of osteoblast growth and differentiation. Physiological reviews 76, 593-629.
Thompson, G.J., and Puleo, D.A. (1996). Ti-6Al-4V ion solution inhibition of osteogenic cell phenotype as a function of differentiation timecourse in vitro. Biomaterials 17, 1949-1954.
Verberckmoes, S.C., Behets, G.J., Oste, L., Bervoets, A.R., Lamberts, L.V., Drakopoulos, M., Somogyi, A., Cool, P., Dorrine, W., De Broe, M.E., et al. (2004). Effects of strontium on the physicochemical characteristics of hydroxyapatite. Calcified tissue international 75, 405-415.
Wennerberg, A., and Albrektsson, T. (2009). Effects of titanium surface topography on bone integration: a systematic review. Clinical oral implants research 20 Suppl 4, 172-184.
Xia, W., Lindahl, C., Lausmaa, J., Borchardt, P., Ballo, A., Thomsen, P., and Engqvist, H. (2010). Biomineralized strontium-substituted apatite/titanium dioxide coating on titanium surfaces. Acta biomaterialia 6, 1591-1600.
Yao, K.L., Todescan, R., Jr., and Sodek, J. (1994). Temporal changes in matrix protein synthesis and mRNA expression during mineralized tissue formation by adult rat bone marrow cells in culture. Journal of bone and mineral research : the official journal of the American Society for Bone and Mineral Research 9, 231-240.
Yoon, K.G., Rutledge, S.J., Buenaga, R.F., and Rodan, G.A. (1988). Characterization of the rat osteocalcin gene: stimulation of promoter activity by 1,25-dihydroxyvitamin D3. Biochemistry 27, 8521-8526.
校內:2018-08-30公開