簡易檢索 / 詳目顯示

研究生: 呂添裕
Lu, Tien-yu
論文名稱: 高效率上發光式綠光有機發光元件之研製
Study of high efficiency top-emitting green organic light-emitting diodes
指導教授: 許渭州
Hsu, Wei-chou
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 微電子工程研究所
Institute of Microelectronics
論文出版年: 2008
畢業學年度: 96
語文別: 英文
論文頁數: 153
中文關鍵詞: 有機發光二極體上發光式高效率綠光電洞阻隔層
外文關鍵詞: green light, high efficiency, top-emitting, organic light-emitting diodes, hole blocking layer
相關次數: 點閱:102下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文使用LiF/Ag陰極藉由加入電洞阻隔層和摻雜C545T來製作高效率上發光式綠光元件。首先,將未摻雜的綠光有機發光元件結構最佳化,其結構依序如下Glass/Ag(200 nm)Ag2O(X min)/m-MTDATA(30 nm)/NPB(20 nm)/Alq3(45 nm)/ BCP(2 nm)/Alq3(3 nm)/LiF(1 nm)/Ag(20 nm)。
    接著我們調變陽極Ag的紫外光-臭氧處理時間達到期待的改善,得到當陽極Ag經由4分鐘的紫外光-臭氧處理,可使元件在9伏特的外加偏壓下可以達12100 cd/m2的亮度和5.19 cd/A的效率。然後將最佳化紫外光-臭氧處理的元件結構在發光層Alq3用共蒸鍍的方式摻雜綠色染料C545T。從實驗結果得知,藉由摻雜1% C545T我們可以發現元件在10.5伏特的偏壓發光效率可達19.4 cd/A 和61400 cd/m2的亮度。
    接著我們調整m-MTDATA和NPB不同比例的厚度,得到最佳的m-MTDATA和NPB厚度分別為30 nm 和20 nm。然後使用不同厚度的BCP和TPBI作為電洞阻隔層,得到使用BCP的元件比使用TPBI的元件有更佳的表現特性。
    最後,我們使用Alq3做為出光層,來進一步提升元件的亮度與效率。在40 nm的Alq3厚度下得到高效率的綠光,最佳的元件結構為Glass/Ag/Ag2O(4 min)/ m-MTDATA(30 nm)/NPB(20 nm)/Alq3:1%C545T(45 nm)/BCP(2 nm)/Alq3(3 nm)/ LiF(1 nm)/Ag(20 nm)/Alq3(40 nm) ,在最佳的元件結構下,量測到在11伏特電壓下20.6 cd/A 的高效率、11.5伏特外加電壓下60500 cd/m2 的高亮度,並在垂直視角得到548 nm EL peak及在CIE色度座標(0.32 , 0.64)。

    Hole blocking layer and doping have been used in conventional bottom-emitting organic light-emitting diode. In this thesis, we used hole blocking layer and doping C545T to high efficiency top-emitting devices with LiF/Ag cathode. We try to optimize the undoped green organic light emitting device. The structure was Glass/Ag(200 nm)Ag2O/m-MTDATA(30 nm)/NPB(20 nm)/Alq3(45 nm)/BCP(2 nm)/ Alq3(3 nm)/LiF(1 nm)/Ag(20 nm).
    At first, we modulate the time of UV-Ozone treatment on surface of Ag anode to obtain the highest luminescence and efficiency. We get brightness of 12100 cd/m2 and efficiency of 2.706 cd/A at 10.5 applied voltage when 4 min UV Ozone treatment. Hence, we use co-evaporation skills to dope C545T into Alq3. From the results, we dope 1% C545T and obtain the brightness of 61400 cd/m2 and efficiency of 19.4 cd/A.
    Second, we change the thickness ratio of m-MTDATA and NPB, we get the best thickness of m-MTDATA and NPB is 30 nm and 20 nm, respectively. Afterward, we use different thickness of BCP and TPBI to use as hole blocking layer. From experimental results, we get the device using BCP better than device using TPBI.
    At last, we use Alq3 as a capping layer to enhance the brightness and efficiency of device. We get the highest efficiency green device when use 40 nm Alq3 capping layer. The structure of optimization device is Glass/Ag/Ag2O(4 min)/m-MTDATA(30 nm)/ NPB(20 nm)/Alq3:1%C545T(45 nm)/BCP(2 nm)/Alq3(3 nm)/LiF(1 nm)/Ag(20 nm)/Alq3(40 nm). We get the best brightness of 60500 cd/m2 at 11.5 V and efficiency of 20.6 cd/A at 11V and CIE coordinate is about (0.32, 0.64).

    Contents VII Table Captions IX Figure Captions X Chapter 1 Introduction 1 1-1 History of organic electroluminescent devices 1 1-2 The merits of top-emitting organic light-emitting diode 3 1-3 Thesis Motivation and Organization 4 Chapter 2 Physics of organic semiconductor and OLEDs 6 2-1 Basic physics of the organic semiconductors 6 2-1-1 Energy levels in organic materials 6 2-1-2 Excited states in organic molecules 7 2-1-3 Electronic transitions in organic semiconductors 9 2-1-4 Excitons 11 2-2 Device physics of organic light-emitting diodes 11 2-2-1 Device structure 11 2-2-2 Electrical processes in the device 13 2-2-3 Optical processes in OLEDs 19 2-3 Design of Organic Light-emitting Device 20 2-3-1 Anode and cathode 21 2-3-1 Organic layer 24 2-3-2 Green Organic Light-emitting Device 28 2-4 Basics of microcavity 28 Chapter 3 Materials and Measurement 31 3-1 Materials used in this experiment 31 3-2 Measurement system 32 3-2-1 Measurement of light emission 32 3-2-2 Current-voltage measurement 34 3-2-3 Optical measurement 35 Chapter 4 Fabrication of Top-Emitting OLEDs 36 4-1 Device Fabrication Procedure 36 4-1-1 Substrate cleaning 36 4-1-2 Deposition of Ag anode 37 4-1-3 UV Ozone treatment 37 4-1-4 Deposition of organic thin films 38 4-1-5 Deposition of Ag cathode 38 Chapter 5 Experimental Results and discussions 39 5-1 Device Structure 39 5-2Glass/Ag/Ag2O( X min)/m-MTDATA(30 nm)/NPB(20 nm)/ Alq3 (45 nm)/BCP(2 nm)/Alq3(3 nm)/LiF(1 nm)/Ag(20 nm) 40 5-3 Glass/Ag/Ag2O(4 min)/m-MTDATA(30 nm)/NPB(20 nm)/Alq3: X%C545T (45 nm)/BCP(2 nm)/Alq3(3 nm)/LiF(1 nm)/Ag(20 nm) 42 5-4Glass/Ag/Ag2O(4min)/m-MTDATA(Xnm)/NPB(Ynm)/Alq3:1% C545T (45nm)/BCP(2nm)/Alq3(3nm)/LiF(1nm)/Ag(20nm) 44 5-5 Glass/Ag/Ag2O(4 min)/m-MTDATA(30 nm)/NPB(20 nm)/Alq3: 1% C545T(45 nm)/BCP(X nm)/Alq3(3 nm)/LiF(1 nm)/Ag(20 nm) 46 5-6 Glass/Ag/Ag2O(4 min)/m-MTDATA(30 nm)/NPB(20 nm)/Alq3: 1% C545T (45nm)/TPBI(X nm)/Alq3(3 nm)/LiF(1 nm)/Ag(20 nm) 48 5-7Glass/Ag/Ag2O(4min)/m-MTDATA(30nm)/NPB(20nm)/Alq3:1%C545T (45 nm)/BCP(2 nm)/Alq3(3 nm)/LiF(1 nm)/Ag(20 nm)/Alq3(X nm) 50 Chapter 6 Conclusion 52 References 53 List of Symbols 152 Acknowledgement 153

    [1] M. Pope, H. P. Kallmann, P. Magnante, J. Chem. Phys., 38, 2024 (1963)
    [2] Patent US172862
    [3] C.W. Tang and S.A. VanSlyke, Appl. Phys. Lett., 51, p. 913 (1987)
    [4] J. H. Burroughes, D. D. C. Bradley, A. R. Brown, R. N. Marks, K. Mackly, R. H. Frinend, P. L. Burn, and A. B. Homes, Nature, 347, p. 539 (1990)
    [5] V. Bulović, G. Gu, P. E. Burrows, S. R. Forrest, and M. E. Thompson, Nature, 380, 29 (1996).
    [6] G. Gu, V. Bulovic, P. E. Burrows, S. R. Forrest, and M. E. Thompson, Appl.Phys. Lett. 68, p. 2606 (1996).
    [7] G. Parthasarathy, P. E. Burrows, V. Khalfin, V. G. Kozlov, and S. R. Forrest, Appl. Phys. Lett., 72, p. 2138 (1998).
    [8] L. S. Hung and C. W. Tang, Appl. Phys. Lett. , 74, 3209 (1999).
    [9] G. Parthasarathy, C. Adachi, P. E. Burrows, and S. R. Forrest, Appl. Phys. Lett. , 76, 2128 (2000).
    [10] A. Yamamori, S. Hayashi, T. Koyama, and Y. Taniguchi, Appl. Phys. Lett. , 78, 3343 (2001).
    [11] T. Oyamada, H. Yoshizaki, H. Sasabe, and C. Adachi, Chem. Lett., 33, 1034 (2004).
    [12] H. Riel, S. Karg, T. Beierlein, B. Ruhstaller, and W. Rieβ, Appl. Phys. Lett. , 82,466 (2003).
    [13] V. Bulović, P. Tian, P. E. Burrows, M. R. Gokhale, S. R. Forrest, and M. E. Thompson, Appl. Phys. Lett., 70, 2954 (1997).
    [14] C. W. Chen, P. Y. Hsieh, H. H. Chiang, C. L. Lin, H. M. Wu, and C. C. Wu, Appl.Phys. Lett., 83, 5127 (2003).
    [15] G. G. Qin, A. G. Xu, G. L. Ma, G.. Z. Ran, Y. P. Qiao, B. R. Zhang, W. X. Chen, and S. K. Wu, Appl. Phys. Lett., 85, 5406 (2004).
    [16] H. Riel, S. Karg, T. Beierlein, W. Rieβ, and K. Neyts, J. Appl. Phys., 94, 5290 (2003).
    [17] C. C. Wu, C. L. Lin, P. Y. Hsieh, and H. H. Chiang, Appl. Phys. Lett., 84, 3966 (2004).
    [18] P. K. Raychaudhuri, J. K. Madathil, J. D. Shore, and S. A. Van Slyke, Journal of the Society for Information Display, 12/3, 315 (2004).
    [19] C. W. Tang, S. A. VanSlyke and C. H. Chen, J. Appl. Phys., 65, 3610, (1989).
    [20] U. S. Lighting Market Characterization, U. S. Department of Energy, Prepared by Narigant Consulting, InC.,Washington (2001)
    [21] C. Adachi, M. A. Baldo, M. E. Thompson, and S. R. Forrest, J. Appl. Phys., 90, 5048 (2001).
    [22] R. Farchioni and G. Grosso (Eds.), Organic Electronic Materials, Springer,Heidelberg 2001.
    [23] M. Pope and C. E. Swenberg, Electronic Processes in Organic Crystals and Polymers, 2nd Ed., Oxford University Press, New York 1999.
    [24] W. Brtting, Physics of Organic Semiconductors, Wiley-VCH, Berlin 2005.
    [25] M. A. Baldo, M. E. Thompson, and S. R. Forrest, Nature, 403, 750 (2000).
    [26] E. A. Silinsh, Organic molecular crystals, their electronic states, Solid-State Science 16, Springer, Heidelberg 1980.
    [27] G. G. Malliaras and J. C. Scott, J. Appl. Phys., 83, 5399 (1998).
    [28] S. A. Carter, M. Angelopoulos, S. Karg, P. J. Brock, and J. C. Scott, Appl. Phys.Lett., 70, 2067 (1997).
    [29] W. R. Salaneck, K. Seki, A. Kahn, and J. J. Pireaux (Eds.), Marcel Dekker, New York 2001.
    [30] C. Shen and A. Kahn, Org. Electron. 2, 89 (2001).
    [31] I. G. Hill, J. Schwartz, and A. Kahn, Org. Electron. 1, 5 (2000).
    [32] P. S. Bagus, V. Staemmler, and C. Wll, Phys. Rev. Lett., 89, 096104 (2002).
    [33] H. Vazquez, F. Flores, R. Oszwaldowski, J. Ortega, R. Perez, and A.Kahn, Appl.Surf. Sci., 234, 107 (2004).
    [34] S. M. Sze, Physics of Semiconductor Devices, 2nd Ed. Wiley, New York 1981.
    [35] L. Y. Shen, M. W. Klein, D. B. Jacobs, J. C. Scott, and G. G. Malliaras, Phys. Rev. Lett., 86, 3867 (2001).
    [36] G. G. Malliaras and J. C. Scott, J. Appl. Phys., 85, 7426 (1999).
    [37] Y. Liu, M. S. Liu, A. K.-Y. Jen, Acta Polym. 50, 105 (1999)
    [38] M. A. Lambert and P. Mark, Current Injection in Solids, New York: Academic,1970.
    [39] K. C. Kao and W. Hwang, Electrical Transport in Solids, Pergamon press,Oxford 1981.
    [40] M. Segal, M. A. Baldo, R. J. Holmes, S. R. Forrest, and Z. G. Soos, Phys. Rev. B, 68, 075211 (2003).
    [41] W. Helfrich, Physic and Chemistry of the Organic Solid State, Wiley-Interscience, New York 1967.
    [42] M. K. Lee, M. Segal, Z. G. Soos, J. Shinar, and M. A. Baldo, Phys. Rev. Lett., 94, 137403 (2005).
    [43] Y. Cao, I. D. Parker, G. Yu, C. Zhang, and A. J. Heeger, Nature, 397, 414 (1999).
    [44] M. Wohlgenannt, K. Tandon, S. Mazumdar, S. Ramasesha, and Z.V. Vardeny, Nature, 409, 494 (2001).
    [45] J. S. Wilson, A. S. Dhoot, A. J. A. B. Seeley, M. S. Khan, A. Khler, and R. H. Friend, Nature, 413, 828 (2001).
    [46] Y. Wu, Y. C. Zhou, H. R. Wu, Y. Q. Zhan, J. Zhou, S. T. Zhang, J. M. Zhao, Z. J. Wang, X. M. Ding, and X. Y. Hou, Appl. Phys. Lett., 87, 044104 (2005).
    [47] P. Andrew and W. L. Barnes, Science, 290, 785 (2000).
    [48] J. M. Shi and C. W. Tang, Appl. Phys. Lett., 70, 1665 (1997).
    [49] L. H. Smith, J. A. E. Wasey, and W. L. Barnes, Appl. Phys. Lett., 84, 2986 (2004).
    [50] A. L. Burin, M. A. Ratner, J. Phys. Chem. A, 104, 4704 (2000)
    [51] J. L. Vossen, Physics of Thin Films, Vol. 9, p.1 (1997),
    [52] C. Hosokawa, et al., SID Digest, (1998), pp.7
    [53] T. Komaru et al., Jpn. J. Appl. Phys., Part I, Vol. 38, (1999), pp. 5796
    [54] J. Cui, A. Wang, N. L. Edleman, J. Ni, P.Lee, N. R. Armstrong, T. J. Marks, Adv. Master., 13, 1476 (2001)
    [55] F. O. Adurodija, H. Izumi, T. Ishihar, Thin Solid Films, 350, 79, (1999)
    [56] J. B. Nimoth, et al., SID Digest, (2004), pp.1000
    [57] T. A. Beierein et al., Synthetic Metals, 111-112, (2000), pp. 295
    [58] S. M. Chung, et al., International Meeting on Information Display, p. 1374 (2005),
    [59] E. I. Haskal, A. Curioni, P. F. Seidler, W. Andreoni, Appl. Phys. Lett., 71, 1151 (1997)
    [60] L. S. Hung, L. S. Liao, C. S. Lee, S. T. Lee, J. Appl. Phys., 86, 4607 (1999)
    [61] L. S. Hung, Thin Solid Films, 363, 47 (2000)
    [62] J. Yoon, J. Kim, T. Lee, and O. Park, Appl. Phys. Lett., 76, 2152 (2000).
    [63] L. S. Hung, C. W. Tang, and M. G. Mason, Appl. Phys. Lett., 70, 152 (1997).
    [64] M. Stobel, J. Staudigel, F. Steuber, J. Blassing, J. Simmerer, and A.Winnacker, Appl. Phys. Lett., 76, 115 (2000).
    [65] S. E. Shaheen, G. E. Jabbour, M. M. Morelli, Y. Kawabe, B. Kippelen, N. Peyghambarian, M.-F. Nabor, R. Schlaf, E. A. Mash, and N. R. Armstrong, J. Appl. Phys., 84, 2324 (1998).
    [66] T. Mori, H. Fujikawa, S. Tokito, and Y. Yaga, Appl. Phys. Lett., 73, 2763 (1998).
    [67] G. E. Jabbour, Y. Kawabe, S. E. Shaheen, J. F. Wang, M. M. Morelli, B. Kippelen, and N. Peyghambarian, Appl. Phys. Lett., 71, 1762 (1997).
    [68] P. Piromreun, H. Oh, Y. Shen, G. G. Malliaras, J. C. Scott, and P. J. Brock, Appl. Phys. Lett., 77, 2403 (2000).
    [69] G. E. Jabbour, B. Kippelen, N. R. Armstrong, and N. Peyghambarian, Appl. Phys. Lett., 73, 1185 (1998).
    [70] H. Fujikawa, T. Mori, K. Noda, M. Ishii, S. Tokito, andY. Taga , 87, 1177 (2000)
    [71] S. P. Sibley, M. E. Thompson, P. E. Burrows, and S. R. Forrest, D. M. Roundhill, and J. Fackler, Eds. New York: Plenum, in press
    [72] Yung-Cheng Tsai, Jwo-Huei Jou, Appl. Phys. Lett., 89, 243521 (2006)
    [73] R. H. Jordan, A. Dodabalapur, M. Strukelj, and T. M. Miller, Appl. Phys. Lett., 17, 07974 (1995)
    [74] L. J. Rothberg and A. J. Lovinger , J. Mater. Res., 11, 3174 (1996).
    [75] L. S. Hung and J. Madathil, Thin Solid Films 410, 101 (2002).
    [76] Y. Q. Li, J. X. Tang, Z. Y. Xie, L. S. Hung, and S. S. Lau, Chem. Phys. Lett., 386,128 (2004).
    [77] T. Tsutsui, M. J. Yang, M. Yahiro, K. Nakamura, T. Watanabe, T. Tsuji, Y. Fukuda, T. Wakimoto, and S. Miyaguchi, Jpn. J. Appl. Phys., 38, L1502 (1999).
    [78] C. F. Qiu, H. J. Peng, H. Y. Chen, Z. L. Xie, M. Wong, and H. S. Kwok, IEEE T. Electron. Dev. , 51, 1207 (2004).
    [79] S. A. VanSlyke, C. H. Chen, and C. W. Tang, Appl. Phys. Lett., 69, 2160 (1996)
    [80] Y. Shen, D. B. Jacobs, G. G. Malliaras, G. Koley, M. G. Spencer, and A. Orannidis, Adv. Mater., 13, 1234 (2001)
    [81] C. Qiu, H. Chen, Z. Xie, M. Wong, and H. S. Hwok, Appl. Phys. Lett., 80, 3485 (2002)
    [82] I.-M Chen, T.-Y. Hsu, and F. C. Hong, Appl. Phys. Lett., 81, 1899 (2002)
    [83] Do, L., Ham E.,Yamamoto N., Fujihira, M. MOl. Cryst. Liq. Cryst., 280, p. 273 1993,.
    [84] Granlund, T., Pettersson, L. A. A., Ingenas, O., Determination of emission zone in a single-layer polymer light0emitting diode through optical measurements
    [85] J. Kido, M. Kimura, K. Nagai, Science , 267, 1332 (1995)
    [86] R. S. Deshpande, V. Buloivic, and S. R. Forrest, Appl. Phys. Lett., 75, 888(1999)
    [87] Chieh-Wei Chen, Ping-Yuan Hsieh, Huo-Hsien Chiang, Appl. Phys. Lett., 83,5127 (2003)
    [88] L. S. Hung, C. W. Tang, M. G. Mason, P. Raychaudhuri, and J. Madathil, Appl. Phys. Lett., 78, 544 (2001).
    [89] M. Anni, G. Gigli, S. Patane, A. Arena, M. Allegrini, and R. Cingolani, Physica E 13, 451 (2002).
    [90] Ting-Yi Cho, Chun-Liang Lin, and Chung-Chih Wu, Appl. Phys. Lett., 88, 111106 (2006)
    [91] Qiang Huang, Karsten Walzer, Martin Pfeiffer, and Karl Leo, J.Appl.Phys., 100,064507 (2006)
    [92] Chih-Jen Yang, Su-Hao Liu, Hsing-Hung Hsieh, Chih-Che Liu, Appl.Phys.Lett., 91, 253508 (2007)
    [93] Huajun Peng, Jiaxin Sun, Xiuling Zhu, Xiaoming Yu, Man Wong, and Hoi-Sing Kwok, Appl. Phys. Lett., 88, 073517 (2006)
    [94] K. Neyts, P. De Visschere, D. K. Fork, and G. B. Anderson, J. Opt. Soc. Am. B 17, 114 (2000).
    [95] A. Dodabalapur, L. J. Rothberg, R. H. Jordan, T. M. Miller, R. E. Slusher, and J. M. Philips, J. Appl. Phys., 80, 6954 (1996).
    [96] A. Yariv, Quantum Electronics, 2nd Ed., Wiley, New York 1975.
    [97] A. Chin and T. Y. Chang, J. Lightwave Technol. 9, 321 (1991).
    [98] Shih-Feng Hsu, Shiao-Wen Hwang, Chin H. Chen, SID 05 Digest 32 (2005).
    [99] Takahiro Shiga, Hisayoshi Fujikawa, Yasunori Taga, J. Appl. Phys., 93, 19 (2003).
    [100] Victor A. Montes, Radek Pohl, Joseph Shinar, Pavel Anzenbacher Jr. , Chemistry - A European Journal 2006, Volume 12, pp. p 4523-4535
    [101] J. Kido, M. Kohda, K. Okuyama, K. Nagai, Appl. Phys. Lett. , 61, 761 (1992)
    102] S. R. Forrest, D. D. C. Bradley, and M. E. Thompson, Adv. Mater., 15, 1043 (2003).
    [103] I. Tanaka and S. Tokito, Jpn. J. Appl. Phys., 43, 7733 (2004).
    [104] S. Okamoto, K. Tanaka, Y. Izumi, H. Adachi, T. Yamaji, and T. Suzuki, Jpn. J. Appl. Phys., 40, L783 (2001).
    [105] H. J. Peng, PhD thesis, Hong Kong University of Science and Technology (2005).

    下載圖示 校內:2012-06-27公開
    校外:2013-06-27公開
    QR CODE