簡易檢索 / 詳目顯示

研究生: 林俊廷
LIN, JIUN-TING
論文名稱: 波浪中液櫃沖激效應與船舶運動交互影響之分析與驗證
The Analysis and Verification of the interaction effect between the ship motion and the liquid-tank sloshing in waves
指導教授: 方銘川
FANG, MING-CHUNG
學位類別: 碩士
Master
系所名稱: 工學院 - 系統及船舶機電工程學系
Department of Systems and Naval Mechatronic Engineering
論文出版年: 2018
畢業學年度: 106
語文別: 中文
論文頁數: 59
中文關鍵詞: 液櫃沖激自由液面船體運動耦合效應耐海性
外文關鍵詞: tank sloshing, free surface, ship motion, coupling effect, seakeeping
相關次數: 點閱:91下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究利用已發展之船舶運動數值模擬程式,加入液櫃沖激(Tank Sloshing)耦合效應,進行一系列深入探討。在處理波浪中船體運動問題採用二維截片方法與勢流理論,船上液櫃內流體沖激現象使用商業軟體FLUENT來進行模擬,其採用黏性流理論求解並以有限體積(Volume of Fluid)法追蹤自由液面位置。將因為自由液面效應造成的流體重心變化影響加入至船體運動方程式,建立具液櫃沖激效應之船舶耦合運動計算方法。
    本研究為了證明模擬液櫃沖激現象的準確性,特別以Hinatsu在2001年所做的二相流實驗結果作比較,並同時比對Hamid在2007年以VOF法模擬液櫃沖激的數值模擬結果,經由結果比對可以證明本研究確實能夠準確的模擬液櫃沖激現象,並且發現當選用的时距越小,對於自由液面的情形及瞬間的脈衝壓力能夠更為精確的模擬。
    除了數值模擬的部分,本研究亦加入液櫃沖激效應之船模實驗,以耐海性試驗為基礎,加載不同配置之水櫃,觀察船舶運動與沖激現象之耦合運動,並與數值結果進行驗證,最終發現液櫃沖激效應對於起伏和縱搖的運動影響不大,但是對於橫搖則有較大的影響,當遭遇高頻的波浪且正好為液櫃的共振頻率時,雖然此時對於橫搖運動並無太大的影響,但是激烈變動的自由液面卻可能造成船體液櫃結構的破壞,而當遭遇到低頻的波浪時,流體重心變化所形成的力矩加大船體的橫搖運動,原本船體運動在遭遇低頻的波浪時就比較容易會有翻覆的情形,此時加上液櫃沖激的影響可能會使得原本很危險的情況更加的危險。

    In this research, a series of deep studies considering the coupling effect of liquid tank sloshing on the well-developed ship motion numerical simulation model are made. The strip method and potential theory are adopted to treat the ship motion in waves and the liquid sloshing behaviors are included by using the commercial software- Fluent, which is based on the viscous flow theory and solved by finite fluid volume to track the free surface position. Incorporating the liquid sloshing moment caused by free surface effect with the ship motion in waves, we can establish the coupled motion prediction model of the sloshing tank and ship hull in waves.

    In order to confirm the accuracy of simulating in the tank sloshing effect. In this research, it has been compared the result with the tank sloshing experiment and simulation made by Hinatsu and Hamid respectively. In comparison with the experiment and simulation proved the great accuracy in this research. It is found that the smaller the time step size is selected, the more accurate the simulation of the free surface condition and the impact pressure.

    From this research, we find the sloshing tank with different liquid level will make different effect on the ship motions with respect to different wave periods, especially for rolling motion. The key factor for influencing the roll motion depends on the phase difference between the ship motion and liquid sloshing motion, which is very important to be paid attention while any of the ship liquid tanks is fully filled in waves. When ship encounters high frequency wave, we should focus on the impact pressure effect on the ship structural. On the other hand, when ship encounters low frequency wave, we should focus on the free surface effect on rolling motion.

    摘要 I 誌謝 XII 目錄 XIII 表目錄 XIV 圖目錄 XV 符號說明 XVII 第一章 緒論 1 1.1 研究動機與目的 1 1.2 相關研究與文獻 2 1.3 本文架構 4 第二章 理論與數值方法 5 2.1 船體運動數學模式 5 2.2 液櫃沖激理論 11 2.3 FLUENT相關理論與數值方法 13 第三章 液櫃沖激驗證與船舶運動耦合效應 20 3.1 液櫃沖激設定及驗證 20 3.2 液櫃沖激與船舶運動耦合效應之設定 26 第四章 船模試驗設備及流程 30 4.1 實驗設備與模型 30 4.2 實驗流程 40 4.3 數據擷取 43 第五章 結果分析與討論 44 第六章 結論與未來展望 55 參考文獻 57

    [1]Korvin-Kroukovsky B.V., & Jacobs, W.R., “Pitching and Heaving Motions of a Ship in Regular Waves”, SNAME Trans. 65, pp. 590-632(1952)
    [2]Salvesen,N.,Turk,E.o. and Faltinsen,O. ,”Ship Motion and Sea Load”,Tran.,SNAME,Vol.78,pp. 250-287(1970)
    [3]Kim,C.H.,Chou,F.S. and Tien D.,”Motions and Hydrodynamic Load of a Ship Advancing in Oblique Waves”,Trans.SNAME, Vol. 88, pp. 225-256,1980
    [4]Fang, M.C., Lee, M.L. and Lee, C.K., Time Simulation of Water Shipping for a Ship Advancing in Large Longitudinal Waves”, Journal of Ship Research, Vol. 37, No.2, pp. 126-137,June(1993)
    [5]徐玉樹,順浪中船舶之穩度安全性,國立成功大學造船暨船舶機械工程研究所碩士論文,民國八十六年。
    [6]Abramson H. N., 1966 , “The Dynamic Behavior of Liquids in Moving Containers,” NASA SP-106.
    [7]Faltinsen Odd M., Timokha Alexander N., 2009, “Sloshing”, 1st edition., Cambridge University Press.
    [8]Faltinsen Odd M. and Timokha Alexander N., 2001, “An Adaptive Multimodal Approach to Nonlinear Sloshing in a Rectangular Tank,” Journal of Fluid Mechanics 432, pp.167-200.
    [9]Loots E., Pastor W., Buchner B., et al., 2004, “The Numerical Simulation of LNG Sloshing with sn Improved Volume of Fluid Method,” Proceedings of 23rd International Conference on Offshore Mechanics and Arctic Engineering, Vancouver, Canada.
    [10]Hamid Rezaei and Mohammad Javad Ketabdariy, 2007, “Numerical Modelling of Sloshing with VOF Method”, The 12th International Conference on Fluidization - New Horizons in Fluidization Engineering
    [11]JIN Jing, Xue Hongxiang, Tang Wenyong,et al, 2012, “Calculation Procedure of Sloshing Loads for Large-Scale Depot Ships,” Chinese Journal of Ship Research, 7(6), pp. 50-56.
    [12]Zhang Shuyi, Duan Wenyang, 2011, “Numerical Simulation of Sloshing Loads on Rectangular Tank Based on Fluent,” Chinese Journal of Ship Research, 6(5), pp. 73-77.
    [13]Francescutto A., Contento G., 1994, “An Experimental Study of the Coupling Between Roll Motion and Sloshing in a Compartment,” Proceedings of the 4th International Offshore and Polar Engineering Conference, Osaka, Japan.
    [14]Rognebakke O. F.,Falfinsen O. M., 2003, “Coupling of sloshing and ship motions,” Journal of Ship Research, 47(3), pp.208-221.
    [15]Molin B., Remy F., Rigaud S., 2002, “LNG-FPSO’s Frequency Domain Coupled Analysis of Support and Liquid Cargo Motions,” Proceedings of INAM Conference, Rethymnon, Greece.
    [16]Kim Y., 2002, “A Numerical Study on Sloshing Flows Coupled with Ship Motion-the Anti-Rolling Tank Problem,” Journal of Ship Research, 46(1), pp. 52-62.
    [17]Nicolas Moirod, Eric Baudin, Thomas Gazzola, Louis Diebold, 2010, “Experimental and Numerical Investigations of the Global Forces Exerted by Fluid Motions on LNGC Prismatic tanks Boundaries,” ISOPE, China.
    [18]祁江濤,顧民,吳乘勝,2008,”液艙晃盪的數值模擬”,船舶力學,12(4),pp. 574-581。
    [19]LI Yu-Long, Zhu Ren-Chuan, Miao Guo-Ping, Fan Ju, Lu Zhi-Mei, 2012, “Simulation of Ship Motions Coupled with Tank Sloshing in Time Domain Based on OpenFOAM,” Journal of Ship Mechanics, 6(7).
    [20]ABS, 2012, “Level 1 Sloshing Analysis,” ABS.
    [21]羅志宏,船隻在順波中波向穩定性與運動之分析,國立成功大學造船暨船舶機械工程研究所碩士論文,民國九十年。
    [22]Hamamoto, M. and Kim, Y.S., “A new coordinate system and the equations describing maneuvering motion of a ship in waves (in Japanese),” Journal of the Society of Naval Architects of Japan, Vol. 173, pp. 209-220, 1993.
    [23]Hamamoto, M., Matsuda, A., and Ise, Y., “Ship motion and the dangerous zone of a ship in severe following seas (in Japanese),” Journal of the Society of Naval Architects of Japan, Vol. 175, pp. 69-78, 1994.
    [24]Hinatsu, M., Tsukada, Y., Fukusawa, R. and Tanaka, Y., 2001, Experiments of Two-Phase Flows for the Joint Research, In Proceedings of SRI-TUHH mini-Workshop on Numerical Simulation of Two-Phase Flows, edited by M. Hinatsu, pages 12–19. National Maritime Research Institute, Tokyo, Japan.
    [25]呂振維,以計算流體動力學分析水下載具流體動力係數之研究,國立成功大學造船暨船舶機械工程研究所碩士論文,民國一百零一年。
    [26]Lloyd’s Register, " Sloshing Loads and Scantling Assessment" (2004)
    [27]Det Norske Veritas, " Sloshing Analysis of LNG Membrane Tanks", Classification Notes No. 30.9 (2006)

    下載圖示 校內:2019-09-01公開
    校外:2019-09-01公開
    QR CODE