簡易檢索 / 詳目顯示

研究生: 張立鼎
Chang, Li-Ding
論文名稱: 三維異向彈性體之邊界積分正規化
Regularization of the Boundary Integral for 3D Anisotropic Elasticity
指導教授: 夏育群
Shiah, Y.C.
學位類別: 碩士
Master
系所名稱: 工學院 - 航空太空工程學系
Department of Aeronautics & Astronautics
論文出版年: 2015
畢業學年度: 103
語文別: 中文
論文頁數: 84
中文關鍵詞: 邊界元素法自正規化近似奇異積分三維全異向性彈性體
外文關鍵詞: Boundary Element Method, self-regularization, nearly singular integrals, 3D anisotropic elasticity
相關次數: 點閱:220下載:18
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本文中研究的對象是對於三維全異向性彈性體,處理超薄問題以及內部點靠近邊界等問題,由於在邊界元素法(BEM)在社會大眾所周知問題就是,當源點是非常接近其邊界時,將產生的近似奇異積分(nearly singular integration)的問題,就是當超薄體的幾何相對表面是非常靠近彼此以及分析其中內部點相當靠近邊界時,會產生所謂近似奇異積分(nearly singular integration)的問題。
    在本文中,自正規化(self-regularization)的邊界積分方程(BIE)之三維等向性彈性體之分析由He and Tan【1】提出,而本文擴展應用於研究超薄幾何問題以及內部點靠近邊界時,與其位置形狀還有跟三維的全異向性材料之間的應力與位移的結果數值。
    在本文中,自由項(free term)在三維全異向性彈性的解析解可以得到,在此篇文章將深入解釋此自由項,此外也可以用於自正規化(self-regularization)處理其內部應變/應力的分析。

    This research targets investigation of stress concentration in a 3D anisotropic elastic body containing an oblate cavity by the boundary element method (BEM). As is well known in the community of BEM, the problem of nearly singular integration will arise when the source point is very close to the boundary. This situation happens to cases when the opposite surfaces of the oblate cavity are very near to each other or the internal point of analysis is very near the boundary. In this paper, the self-regularized boundary integral equation (BIE) presented by He and Tan [1] for 3D isotropic elastic analysis is applied to investigate how the location and shape of an oblate cavity affect the stress concentration in a 3D anisotropic column. In this paper, the analytical solution of the free term in the BIE for 3D anisotropic elasticity is derived. Also, the self-regularization treatment is taken for the analysis of internal strains/stresses.

    目 錄 中文摘要 I 英文摘要 II 誌謝 VI 目錄 VII 表目錄 IX 圖目錄 XI 第一章 導論 1 1.1 引言 1 1.2 研究動機與目的 4 1.3 文獻回顧 5 1.4 研究方法與流程 7 第二章 理論回顧 9 2.1 邊界積分方程式 9 2.2 異向性材料之位移解 11 2.3 異向性材料之應力解 14 第三章 格林函數 16 3.1 格林函數以複立葉表示 16 3.2 格林函數一階導數 19 3.3 格林函數二階導數 21 第四章 自正規化方法(Self-regularization) 23 4.1 自正規化之邊界積分式 23 4.2 邊界積分式之自由項計算 27 4.3 自正規化於內部點 29 第五章 數值範例分析 31 5.1 範例1 –立方體受均勻拉力 33 5.2 範例2 –中空圓柱內部均勻受壓力 42 5.3 範例3 –中空圓球內部均勻受壓力 50 5.4 範例4 –超薄薄板受均勻拉力 59 5.5 範例5 –超薄圓柱受均勻內壓力 66 5.6 範例6 –超薄圓球受均勻內壓力 71 第六章 未來展望 80 參考文獻 81

    1. He, M.G.; Tan, C.L. (2013): A self-regularization technique in boundary element method for 3-D stress Analysis. CMES- Computer Modeling in Engineering and Sciences, vol.95, no.4, pp.317-349, 2013.
    2. Zozulya, V.V. (2010): Divergent Integrals in
    Elastostatics: Regularization in 3-D Case. CMES- Computer Modeling in Engineering & Sciences, vol.70, no.3, pp. 253-349.
    3. Chen, J.T.; Hong, H-K. (1999): Review of Dual Boundary Element Methods with Emphasis on Hypersingular Integrals and Divergent Series. Applied Mechanics Reviews, vol.52, no.1, pp. 17-33.
    4. Guz, A.N.; Zozulya, V.V. (2001): Fracture Dynamics with Allowance for a Crack Edges Contact Interaction. International Journal of Nonlinear Sciences and Numerical Simulation, vol.2, no.3, pp. 173-233.
    5. Tanaka, M.; Sladek, V.; Sladek, J. (1994): Regularization Techniques Applied to Boundary Element Methods. Applied Mechanics Reviews, vol.47, no.10, pp. 457-499.
    6. Granados, J.J.; Gallego, R. (2001): Regularization of Nearly Hypersingular Integrals in the Boundary Element Method. Engineering Analysis with Boundary Elements, vol.25, no.3, pp. 165-184.
    7. Tomioka, Satoshi; Nishiyama, Shusuke (2010): Analytical Regularization of Hypersingular Integral for Helmholtz Equation in Boundary Element Method. Engineering Analysis with Boundary Elements, vol.34, no.4, pp. 393-404.
    8. Lacerda, L.A. de; Wrobel, L.C. (2001): Hypersingular Boundary Integral Equation for Axisymmetric Elasticity. Int. J. Numer. Meth. Engng, vol.52, pp. 1337-1354.
    9. Shiah, Y.C.; Shi, Yi-Xiao (2006): Heat conduction across thermal barrier coatings of anisotropic substrates. International Communications in Heat and Mass Transfer, vol.33, no.7, pp. 827-835.
    10. Shiah, Y.C.; Hematiyan, M.R.; Chen, Y.H. (2013): Regularization of the boundary integrals in the BEM Analysis of 3D potential problems. Journal of Mechanics, vol.29, no.3, pp 385-401.
    11. Shiah, Y.C. (2015): 3D Elastostatic boundary element analysis of thin Bodies by Integral Regularizations. (In press) Journal of Mechanics.
    12. Cruse, T. A.; Richardson, J. D. (1996): Non-singular Somigliana stress identities in elasticity. International Journal for Numerical Methods in Engineering, vol. 39, no. 19, pp. 3273-3304.
    13. Richardson, J. D.; Cruse, T. A. (1999): Weakly singular stress-BEM for 2-D elastostatics. International Journal for Numerical Methods in Engineering, vol.45, pp. 13-35.
    14. Ting, T.C.T.; Lee,V.G. (1997): The three-dimensional elastostic Green’s function for general anisotropic linear elastic solid. Q. J. Mech. Appl. Math., vol. 50, pp.407-426.
    15. Shiah, Y.C.; Tan, C.L.; Wang, C.Y. (2012): Efficient computation of the Green’s Function and its derivatives for three-dimensional anisotropic elasticity in BEM analysis. Engineering Analysis with Boundary Elements 36, pp. 1746-1755, 2012.
    16. Shiah, Y.C.; Tan, C.L.; Lee, V.G. (2008): Evaluation of explicit-form fundamental solutions for displacements and stresses in 3D anisotropic elastic solids. CMES- Computer Modeling in Engineering & Sciences, vol.34, pp.205-226.
    17. Dangla, P.; Semblat, J. F.; Xiao, H.; Delepine, N. (2005): A simple and efficient regularization method for 3-D BEM: Application to frequency-domain elastodynamics. Bulletin of the Seismological Society of America, vol. 95, no. 5, pp.1916-1927.
    18. Huntington, H.B. (1958): The Elastic Constants of Crystal. Academic Press, New York.
    19. 夏育群、陳春來,「邊界元素法之入門介紹」,高立圖書有限公司,中華民國93年12月15日。
    20. Synge, J.L. (1957): The Hypercircle in Mathematical Physics, Cambridge University Press, Cambridge.
    21. Barnett, D.M. (1972): The precise evaluation of derivatives of the anisotropic elastic Green’s functions. Phys. Stat. Sol. (b) 49, 741–748.
    22. Ting, T.C.T.; Lee,V.G. (1997):The three-dimensional elastostic Green’s function for general anisotropic linear elastic solid. Q. J. Mech. Appl. Math., 50, 407-426.
    23. Ting, T.C.T (1996): Anisotropic Elasticity, Oxford University Press, Oxford.
    24. Shiah, Y.C.; Tan, C.L.; Lee, V.G.; Chen, Y.H. (2008a): Evaluation of Green’s functions for 3D anisotropic elastic solids. Advances in Boundary Element Techniques IX, Proc. BeTeq 2008 Conf., Seville, R. Abascal & M.H. Aliabadi (eds.),E.C. Ltd. (U.K.), pp. 119-124.
    25. Lee,V.G. (2003): Explicit expression of derivatives of elastic Green’s functions for general anisotropic materials. Mech. Res. Comm., 30, 241–249.
    26. Shiah, Y.C.; Tan, C.L.; Lee, V.G. (2008b): Evaluation of explicit-form fundamentalsolutions for displacements and stresses in 3D anisotropic elastic solids. CMES:Computer Modeling in Engineering & Sciences, 34, 205-226.
    27. Ting T.C.T and Lee V.G., 1997. The Three-Dimensional Elastostatic Green’s Function for General Anisotropic Linear Elastic Solids, Q. JI Mech. Appl. Math., Vol. 50, Pt.3.
    28. Shiah, Y.C., Tan, C.L., and Wang, C.Y., 2012. Efficient computation of the Green’s function and its derivatives for three-dimensional anisotropic elasticity in BEM analysis. Eng. Anal. Boundary Elem., 36, 1746-1755.
    29. Dangla, P.; Semblat, J. F.; Xiao, H.; Delepine, N. (2005): A simple and efficient regularization method for 3-D BEM: Application to frequency-domain elastodynamics. Bulletin of the Seismological Society of America, vol. 95, no. 5, pp.1916-1927.

    下載圖示 校內:立即公開
    校外:立即公開
    QR CODE