簡易檢索 / 詳目顯示

研究生: 黃姝綺
Huang, Shu-Chi
論文名稱: 應用於白光LED之氮化物紅光螢光粉(CaAlSiN3:Eu2+)之燃燒合成研究
Combustion Synthesis of Red Nitride CaAlSiN3:Eu2+ Phosphor for White Light LEDs
指導教授: 鍾賢龍
Chung, Shyan-Lung
學位類別: 博士
Doctor
系所名稱: 工學院 - 化學工程學系
Department of Chemical Engineering
論文出版年: 2016
畢業學年度: 104
語文別: 中文
論文頁數: 101
中文關鍵詞: 氮化物螢光粉燃燒合成法CaAlSiN3:Eu2+白光LED
外文關鍵詞: nitride phosphor, Combustion synthesis, CaAlSiN3:Eu2+, White light LED
相關次數: 點閱:87下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 螢光材料是一種光轉換材料,能於吸收晶片之激發光之後,放射不同波長的可見光,白光LED 的許多重要特性如發光效率、演色性、色溫、安定性及使用壽命等,皆相當決定於螢光材料的效能,螢光材料因而可說是白光LED 最重要的關鍵材料之ㄧ。目前白光 LED 照明仍有發光效率不足及缺乏紅光之演色性等極需改進問題,由於化學安定性與熱穩定性的問題,傳統之紅光螢光粉並不適合於LED 照明之應用,新近的研究發現氮化物螢光粉具有極佳之化學安定性與熱穩定性,發紅光且具高量子效率,使用氮化物螢光粉因而是解決目前LED 照明問題的重要途徑。然而,目前氮化物螢光粉之合成皆需在嚴苛的條件下進行,如高溫、高壓、長時間反應,使用空氣、溼氣敏感或昂貴之反應物及複雜之製程等,由於生產不易、產量小、設備及原物料成本高因而價格昂貴,以致氮化物螢光粉之應用進展受限,LED 照明推廣也受限。本論文研究乃引用本實驗室過去建立之合成氮化物陶瓷粉體之燃燒合成法,針對氮化物螢光粉之合成特性,予以改良創新,最後成功地開發出能夠在低壓下以及在短時間內可大量製造CaAlSiN3:Eu2+螢光粉之方法。本論文並探討反應氣體壓力、反應物組成對產物轉化率及發光性質之影響。實驗結果發現藉由調配反應物間的組成與比例,可合成出不同轉化率、螢光強度及發光波長之CaAlSiN3:Eu2+螢光粉體,更可藉由調整主體晶格陽離子鈣元素濃度而可同時合成出多種不同發光波長及表面形貌之螢光粉體,如片狀之AlN:Eu2+ 藍綠光螢光粉體、片狀與棒狀之Ca-α-SiAlON:Eu2,橘紅光螢光粉體及同時具有片狀、棒狀與不規則狀之CaAlSiN3:Eu2+螢光粉體。由實驗結果發現棒狀之CaAlSiN3:Eu2+螢光粉體似乎較片狀與不規則狀之CaAlSiN3:Eu2+螢光粉體有較強之螢光強度,TEM-EDS觀察發現其棒狀結構之CaAlSiN3:Eu2+螢光粉體具有較佳之相純度,而產物中之Ca與Eu含量大致隨Ca含量增加而增加,但仍低於起始反應物之含量,其激發波長範圍均為220~600nm,若利用波長460nm 之藍光激發CaAlSiN3:Eu2+螢光粉可得到一主峰波長位置位於~650nm 及發光範圍介於500~800nm 之放射光譜。

    White light LED lighting is believed to replace the conventional lighting and becomes the next generation lighting device due to its advantages such as energy efficiency, long lifetime, compactness, environment friendliness and designable features. Phosphors are essential materials for the fabrication of the LED lighting devices and their properties significantly affect the performance of the devices. Among various types of phosphor, the type with red emission is considered to be the most urgent one to be developed for two main reasons: Its use can improve the color rendering of the currently commercialized LED lighting devices and conventional red phosphors suffer from poor thermal and chemical stability and low quantum efficiency. Recently, nitride phosphors have been discovered and shown to be ideal for application in LED lighting due to their superior properties such as high quantum efficiency, long wavelength (red) emission and high thermal and chemical stability. However, the methods that have been developed for synthesis of nitride phosphors mostly suffer from either severe synthesis conditions or involving the use of moisture or oxygen sensitive starting materials, resulting in high production costs and thus high market prices of the commercially available nitride phosphors, and limiting the application of the LED lighting devices. In the past few years, we developed a combustion synthesis method for nitride phosphors with advantages including simple and inexpensive equipment required, relatively low cost of the reactants, a fast reaction and short processing time, potential capability for mass production. Effects of N2 gas pressure and reactant compositions related to product yield and emission property will be discussed in this research.The research result reveals the that product yield, emission intensity and wavelength of CaAlSiN3:Eu2+ phosphor can be controlled via adjust the reactant compositions using thermal insulation apparatus. Moreover, effects of Ca content (in the reactant mixture) on the formation and the photoluminescence properties of CaAlSiN3:Eu2+ phosphor (CASIN) were investigated. The plate-like blue-green emission of AlN:Eu2+ phosphor, both of plate-like and bar-like orange-red emission of Ca-α-SiAlON:Eu2+ phosphor and plate-like ,bar-like and irregular-shaped (i.e., agglomerated fine particles) red emission of CaAlSiN3:Eu2+ phosphor can be synthesized at the same time with various Ca contents. The bar-like morphology of CaAlSiN3:Eu2+ seen to have stronger emission than the other two morphologies (i.e., plate-like and agglomerated fine particles of CaAlSiN3:Eu2+), The Ca and Eu contents (expressed as molar ratios) in the synthesized products were found to increase roughly with increasing Y but were both lower than the respective Ca and Eu contents in the reactant mixtures.The synthesized CaAlSiN3:Eu2+ phosphor absorbs light in the region of 220–600 nm and shows a broad band emission in the region of 500–800 nm under excited by the blue light (460 nm) and generates emission peaking at ~650 nm.

    目錄 摘 要…………………………………………………………………I Abstract…………………………………………………………Ⅲ Extended Abstract…………………………………Ⅴ 目 錄……………………………………………………………….XXⅤI 表 目 錄…………………………………………………………XXX 圖 目 錄…………………………………………………………XXXI 第一章 緖論…………………………………………………1 1-1 前言……………………………………………………………1 1-2 白光發光二極體簡介及應用……………….2 1-3 研究動機及目的………………………………………4 第二章 理論基礎與文獻回顧……………………6 2-1 螢光材料…………………………………………………….6 2-1-1螢光材料之分類…………………………………………… …7 2-1-2螢光材料之應用………………………………………………10 2-2 螢光材料之理論基礎……………………………………………12 2-2-1 發光種類及機制………………………………………………12 2-2-2 發光原理………………………………………………………14 2-2-3 影響螢光發光特性之因素……………………………………19 2-2-4 稀土離子的發光特性…………………………………………25 2-3 CaAlSiN3:Eu2+螢光粉之介紹與文獻回顧……………………… 28 2-3-1 CaAlSiN3:Eu2+螢光粉之介紹………………………………… 28 2-3-2 CaAlSiN3:Eu2+螢光粉之文獻回顧…………………………… 28 2-4氮(氧)化物螢光材料合成方法簡介…………………………… 32 第三章 實驗藥品、裝置與方法………………………………………37 3-1實驗藥品………………………………………………………… 37 3-2實驗裝置與設備 ………………………………………………38 3-2-1 壓模成形設備及模具………………………………………… 38 3-2-2 燃燒合成反應器 ………………………………………………38 3-2-3 保溫裝置……………………………………………………… 40 3-3儀器原理及量測方法…………………………………………… 41 3-3-1 XRD分析……………………………………………………… 41 3-3-2 螢光光譜(Spectrofluorometer)特性分析 ………………42 3-3-3場發式電子顯微鏡(FESEM)分析 …………………………… 43 3-3-4 元素分析(EDS)…………………………………………………43 3-3-5 高解析穿透式電子顯微鏡(HRTEM)分析…………………… 44 3-3-6 感應耦合電漿原子發射光譜儀(ICP-OES)分析…………… 46 3-3-7 X-射線光電子能譜儀(XPS)分析………………………… 46 3-3-8粒徑分析……………………………………………………… 47 3-3-9熱電偶溫度量測……………………………………………… 47 3-3-10 產率分析…………………………………………………… 47 3-4 實驗方法及流程…………………………………………………47 3-4-1 反應物製作……………………………………………………47 3-4-2 引燃劑包覆 ………………………………………………… 48 3-4-3 反應錠之保溫……………………………………………… 48 3-4-4 反應錠反應的進行………………………………………… 49 3-4-5 反應溫度之量測 …………………………………………… 49 3-4-6 產物之分析 ………………………………………………… 50 第四章 結果與討論………………………………………………… 51 4-1最佳化合成條件與燃燒現象………………………………………51 4-1-1 反應機制…………………………………………………………53 4-2 反應物組成及反應氣體壓力對產物產率及其他性質之影響……55 4-2-1氮化矽/矽濃度與反應氮氣壓力對產物之影響……………… 56 4-2-2 疊氮化鈉濃度與氯化銨濃度對產物之影響……………………57 4-2-3氧化銪濃度對產物之影響……………………………………… 60 4-3 主體晶格陽離子鈣金屬濃度改變對產物之影響…………………63 4-3-1 XRD分析之結果與討論…………………………………………64 4-3-2 ICP-OES分析之結果與討論…………………………………….......66 4-3-3 FESEM、HRTEM、SAED與EDS分析之結果與討論…………… 67 4-3-4 PL分析之結果與討論………………………………………… 76 4-4 市售CaAlSiN3:Eu2+螢光粉商品之分析比較……………………… 79 第五章 結論…………………………………………………………… 83 參考文獻………………………………………………………………… 85 附錄一……………………………………………………………………101 表 目 錄 表1.1: LED 波長及應用分類……………………………………5 表2.1 基態時三價的稀土離子之電子組態…………………… 8 表 3.1 前半部份研究所使用之反應物名稱,特性及廠牌…… 37 表 3.2 後半部份研究所使用之反應物名稱,特性及廠牌…… 37 表4.1 不同鈣金屬濃度下之主要產物分析……………………65 表4.2 經研磨與酸洗後產物中之陽離子之ICP-OES分析……66 表4.3 經研磨與酸洗後產物中之陽離子之SEM-EDS分析……66 圖 目 錄 圖2.1 螢光材料之應用及產品 …………………………………11 圖2.2 Jablonski 示意圖………………………………………17 圖2.3 組態座標圖……………………………………………… 18 圖2.4 電子躍遷過程之呼吸模型……………………………… 18 圖2.5 LaOCl:Bi3+之螢光材料之激發及放射光譜………………19 圖2.6 Y2O2S:Eu3+與ZnS:Cu 的發光強度對活化劑添加 之濃度的關係圖……………………………………………………23 圖2.7 活化劑離子於高濃度下所造成之濃度淬滅………………24 圖2.8 熱淬滅效應之示意圖………………………………………24 圖2.9 三價的鑭系離子能階圖……………………………………27 圖2.10 燃燒合成反應之示意圖………………………………… 36 圖3.1 模具示意圖…………………………………………………38 圖3.2 反應器主體裝置圖…………………………………………40 圖3.3 保溫裝置示意圖……………………………………………41 圖3.4 反應錠之保溫示意圖………………………………………49 圖3.5 熱電偶與反應物及引燃劑之位置關係示意圖…………… 50 圖4.1燃燒溫度與時間關係圖………………………………………53 圖4.2 反應完成之CaAlSiN3:Eu2+產物………………………………53 圖4.3 燃燒合成CaAlSiN3:Eu2+製程之反應機制……………………55 圖4.4氮化矽濃度與反應氮氣壓力對產物產率之影響…… ………57 圖4.5 疊氮化鈉與氯化銨濃度對產物產率之影響………… ………60 圖4.6 不同氧化銪濃度之放射光譜與激發光譜圖及與YAG:Ce3+粉體 之比較………………………………………………………………… 62 圖4.7 合成產物與反應物氧化銪Eu2O3之XPS分析圖…… ………63 圖4.8 不同鈣金屬濃度下之產物XRD圖…………………………… 65 圖4.9 Y=0.25時之產物表面形貌圖………………………………… 68 圖4.10 Y=0.75時之產物表面形貌圖…………………………………68 圖4.11 Y=1.00時之產物表面形貌圖…………………………………69 圖4.12 Y=1.38時之產物表面形貌圖…………………………………69 圖4.13 Y=1.50時之產物表面形貌圖……………………………… 69 圖4.14 Y=1.68時之產物表面形貌圖……………………………… 70 圖4.15 反應物組成為Ca:Al:Si:Si3N4:Eu2O3:NaN3:NH4Cl = 0.25:1.0:0.25:0.25:0.02:3.5:0.6所合成之片狀AlN:Eu2+ (a) TEM image and corresponding element mapping of Al, N, and Eu; (b) HRTEM image;(c) SAED pattern; and (d) element analysis……………70 圖 4.16 反應物組成為Ca:Al:Si:Si3N4:Eu2O3:NaN3:NH4Cl = 0.25:1.0:0.25:0.25:0.02:3.5:0.6所合成之棒狀Ca-α-SiAlON:Eu2+ (a) TEM image; (b) HRTEM image; and (c) SAED pattern……… 71 圖4.17 反應物組成為Ca:Al:Si:Si3N4:Eu2O3:NaN3:NH4Cl = 0.25:1.0:0.25:0.25:0.02:3.5:0.6所合成之片狀Ca-α-SiAlON:Eu2+ (a) TEM image; (b) HRTEM image; and (c) SAED pattern… ……72 4.18. 反應物組成為Ca:Al:Si:Si3N4:Eu2O3:NaN3:NH4Cl = 0.75:1.0:0.25:0.25:0.02:3.5:0.6所合成之片狀AlN (a) TEM image; (b) HRTEM image; (c) SAED pattern; and (d) element analysis .72 圖4.19 反應物組成為Ca:Al:Si:Si3N4:Eu2O3:NaN3:NH4Cl = 1.5:1.0:0.25:0.25:0.02:3.5:0.6所合成之棒狀CaAlSiN3:Eu2+ (a) TEM image and corresponding element mapping of Ca, Al, Si, N, and Eu; (b) HRTEM image; (c) SAED pattern; and (d) element analysis… 73 圖 4.20 反應物組成為Ca:Al:Si:Si3N4:Eu2O3:NaN3:NH4Cl = 1.5:1.0:0.25:0.25:0.02:3.5:0.6所合成之片狀CaAlSiN3:Eu2+ (a) TEM image and corresponding element mapping of Ca, Al, Si, N, and Eu; (b) HRTEM image;(c) SAED pattern; and (d) element analysis… 74 圖4.21 反應物組成為Ca:Al:Si:Si3N4:Eu2O3:NaN3:NH4Cl = 1.0:1.0:0.25:0.25:0.02:3.5:0.6所合成之不規則狀之CaAlSiN3:Eu2+ (a) TEM image and corresponding element mapping of Ca, Al, Si, N, and Eu; (b) HRTEM image;(c) SAED pattern; and (d) TEM-EDS element analysis………………………………………………………75 圖4.22 反應物組成為Ca:Al:Si:Si3N4:Eu2O3:NaN3:NH4Cl = 1.0:1.0:0.25:0.25:0.02:3.5:0.6所合成之不規則狀之CaO (a) TEM image ;(b)SAED pattern; and (c) TEM-EDS element analysis..75 圖4.23 反應物組成為Ca:Al:Si:Si3N4:Eu2O3:NaN3:NH4Cl = 1.0:1.0:0.25:0.25:0.02:3.5:0.6所合成之不規則狀之Eu3N2 (a) TEM image ;(b)SAED pattern; and (c) TEM-EDS element analysis..76 圖4.24產物之激發與放射螢光光譜分析圖(λex=460nm)………… 77 圖4.25產物之放射螢光光譜分析圖(λex=300和460nm )……… 78 圖4.26高斯分峰之產物放射螢光光譜分析圖(λex=460nm )…… 78 圖4.27 市售商品化之CaAlSiN3:Eu2+螢光粉螢光強度與表面形貌比較……………………………………………………………………… 79 圖4.28 市售商品化(A廠牌)之CaAlSiN3:Eu2+螢光粉之表面形貌… 80 圖4.29 市售商品化(B廠牌)之CaAlSiN3:Eu2+螢光粉之表面形貌… 80 圖4.30 市售商品化(C廠牌)之CaAlSiN3:Eu2+螢光粉之表面形貌..80 圖4.31 (a)自行合成(SHS法)之CaAlSiN3:Eu2+與(b)市售CaAlSiN3:Eu2+螢光粉商品之CIE1931座標圖及粉體外觀圖.......................81 圖4.32 自行合成之CaAlSiN3:Eu2+ (a)Ca=0.25;(b)Ca=1.00;(c)Ca=1.50之熱消光效應分析圖.................................81 圖4.33 自行合成之CaAlSiN3:Eu2+ 之熱消光效應(a)放射強度與(b)主峰波長分析圖.................................................82

    1. Jacobson, M. Z. Review of solutions to global warming, air pollution, and energy security. Energy & Environmental Science. 2(2):148-173, 2009.
    2. Nakamura S, Mukai T and Senoh M.Candela-class high-brightness InGaN/AlGaN double heterostructure blue-Light emitting diodes. App. Phys. Lett. 64:1687-1689,1994.
    3. Narukawa Y. White-light LEDs.Opt.Photonics News. 4 : 25-29, 2004.
    4. Rohwer L.S. and Srivastava A.M. Development of phosphor for LEDs. Electrochem. Soc.Interface.36-39, 2003.
    5. Taso J.Y. Light emitting diodes (LEDs) for general illumination update Optoelectronics Industry Development Association, Washington, DC. 6-7, 2002.
    6. 劉如熹與紀喨勝(民92),紫外光發光二極體用螢光分介紹。台北市:全華科技圖書股份有限公司。
    7. Kitai, A. Luminescent Materials and Applications. Wiley Series in Materials for Electronic and Optoelectronic Applications. P. Capper, S. Kasap, and A.Willoughby.John Wiley & Sons Ltd.2008.
    8. 葉耀宗、黃健豪、張學明,螢光材料於光電科技之應用技術探討。工業材料雜誌,342期,2015年。
    9. 陳登銘,白光LED螢光粉技術三強鼎立,新電子8月號,269 期,2008。
    10. 劉彥群,“白光LED 用之高效能氮氧化物螢光粉(Ca-alpha-SiAlON)之合成製程開發”,碩士論文,國立成功大學化學工程學系,台南市,台灣,民國98 年(2009 年)。
    11. 簡廷峰,“微波合成CaAlSiN3:Eu2+螢光粉與之螢光效能研究”,碩士論文,國立成功大學化學工程學系,台南市,台灣,民國103年(2014年)。
    12. Liaw, S.K. and Chang, S.Y. Recently Technologies Development of High-Power White Light Emitting Diodes. Instruments Today.152: 78-86.2006.
    13. Lee, W.C.,Tu, C.L.,Weng, C.U., Chung, S.L. A novel process for combustion synthesis of AlN powder. J. Mater. Res. 10:774–778. 1995.
    14. Chung, S.L., Yu, W.L., Lin, C.N. A self-propagating high temperature synthesis method for synthesis of AlN powder. J. Mater. Res.14:1928–1933. 1999.
    15. Lin, C.N., Chung, S.L. Combustion synthesis of aluminum nitride powder using additives. J. Mater. Res.16: 2200–2208.2001.
    16. Lin, C.N.and Chung, S.L. Combustion synthesis method for synthesis of aluminum nitride powder using aluminum containers. J. Mater. Res.16: 3518–3525. 2001.
    17. Lin, C.N.and Chung, S.L. Combustion synthesis method for synthesis of aluminum nitride powder using aluminum containers (II). J. Mater. Res.19: 3037–3045. 2004.
    18.徐煜翔,”燃燒法合成氮化硼之製程開發”,博士論文,國立成功大學化學工程學系,台南市,台灣,民國103 年(2014 年)。
    19. Chung, S.L., Huang, S.C., Chou, W.C., Tangguh, W. Phosphors based on nitridosilicates: Synthesis methods and luminescent properties. Curr. Opin. Chem. Eng.3: 62–67.2014.
    20. Chung, S.L.and Huang, S.C. Combustion synthesis and photoluminescence properties of red-emitting CaAlSiN3:Eu2+ phosphor for white-LEDs. Materials. 7:7828–7842.2014.
    21. Yen, W.M., Shionoya, S. and Yamamoto, H. Phosphor handbook. 2nd ed. New York: CRC Press Taylor & Francis Group. 2006.
    22. 溫佑良,“不同粒徑釔鋁石榴石摻鈰螢光體之合成與性質研究 ”,碩士論文,國立成功大學材料科學及工程學系,台南市,台灣,民國92 年 (2003 年)。
    23. 高弘任,“檸檬酸法製備鋁酸鍶鈣螢光粉體及其光性質研究 ”,碩士論文,國立成功大學材料科學及工程學系,台南市,台灣,民國97 年 (2008 年)。
    24. White, M.A.Properties of materials. New York: Oxford University Press, Inc. 1999.
    25. Saller, E.J. Cathodoluminescence detector for applied research laboratories electron microprobe. Review of Scientific Instruments. 38(6): 837.1967.
    26. Gurnett, K.W. The light emitting diode (LED) and its application. Microelectronics Journal. 27(4-5): R37-R41. 1996.
    27. Lloyd, R.A.Low level chemiluminescence from hydrocarbon autoxidation reactions.Part 2.—Thermal decomposition of benzoyl peroxide, cumene hydroperoxide and U.V.irradiated solvents. Transactions of the Faraday Society. 61(514P):2182.1965.
    28. McKeever, S.W.S. Thermoluminescence of Solids. Cambridge Solid State Science Series.Oklahoma State University.1988.
    29. Barber, B.P.et al. Defining the unknowns of sonoluminescence. Physics Reports-Review Section of Physics Letters. 281(2): 65-143. 1997.
    30. Blasse, G. and Grabmaier, B.C. Luminescent Materials. Springer-Verlag Telos.1994.
    31. 陳嘉民,“微波輔助溶液燃燒合成法製備螢光粉體 ”,碩士論文,國立成功大學化學工程學系,台南市,台灣,民國95 年 (2006 年)。
    32. Kuboniwa, S., Kawai, H. and Hoshina, T. Cathodoluminescence Saturation and Decay Characteristics of ZnS: Cu,Al Phosphor. Japanese Journal of Applied Physics. 19(9):1647-1653. 1980.
    33. 石景仁,“白光發光二極體用之釔鋁石榴石螢光粉合成及特性分析 ”,碩士論文,國立臺灣大學化學系,台北市,台灣,民國90 年 (2001 年)。
    34. Xie, R.J. and Hirosaki, N. Silicon-based oxynitride and nitride phosphors for white LEDs-A review. Science and Technology of Advanced Materials. 8(7-8): 588-600. 2007.
    35. Karunaratne, B.S.B., Lumby, R.J. and Lewis, M.H. Rare-earth-doped alpha-Sialon ceramics with novel optical properties. Journal of Materials Research.11(11): 2790-2794. 1996.
    36. Shen, Z.J., Nygren, M. and Halenius, U. Absorption spectra of rare-earth-doped alpha-sialon ceramics. Journal of Materials Science Letters. 16(4): 263-266.1997.
    37. Mitomo, M., Takeuchi, M. and Ohmasa, M. Preparation of alpha-Sialon powders by carbothermal reduction and nitridation. Ceramics International. 14(1): 43-48. 1988.
    38. Huang, J.S. A study of luminescent and structure properties of alpha-SiAlON:Yb2+ phosphors prepared by hydrothermal synthesis process. Piscataway, NJ 08855-1331, United States: Institute of Electrical and Electronics Engineers Inc. 2007.
    39. Lin, C.H. An investigation of luminescent and structure properties of Ca-alpha-SiAlON doped Eu2+ phosphors fabricated by hydrothermal synthesis process. Piscataway, NJ 08855-1331, United States: Institute of Electrical and Electronics Engineers Inc. 2007.
    40.Uheda, K., Hirosaki, N., Yamamoto, Y., Naito, A., Nakajima, T., Yamamotoa, H. Luminescence properties of a red phosphor, CaAlSiN3:Eu2+, for white light-emitting diodes. Electrochem. Solid State Lett. 9: H22–H25. 2006.
    41.Piao, X., Machida, K.I., Horikawa, T.H., Hanzawa, Y., Shimomura, Y., Kijima, N. Preparation of CaAlSiN3:Eu2+ phosphors by the self-propagating high-temperature synthesis and their luminescent properties. Chem. Mater. 19: 4592–4599. 2007.
    42. Li, J.W., Watanabe, T., Sakamoto, N., Wada, H., Setoyama, T., Yoshimura, M. Synthesis of a multinary nitride, Eu-doped CaAlSiN3, from alloy at low temperatures. Chem. Mater. 20: 2095–2105. 2008.
    43. Watanabe, H., Yamane, H., Kijima, N. Crystal structure and luminescence of Sr0.99Eu0.01AlSiN3. J. Solid State Chem. 181: 1848–1852. 2008.
    44. Zhang, Z., Otmar, M., Delsing, A., van der Kolk, E., Notten, P. H., Dorenbos, P., and Hintzen, H. T. Photoluminescence properties and energy level locations of RE3+ (RE= Pr, Sm, Tb, Tb/Ce) in CaAlSiN3 phosphors. Journal of Materials Chemistry. 22(19): 9813-9820. 2012.
    45. Yang, J.J., Wang, T., Chen, D.C., Chen, G.D., Liu, Q.L. An investigation of Eu2+-doped CaAlSiN3 fabricated by an alloy-nitridation method. Mater. Sci. Eng. B. 177: 1596–1604. 2012.
    46. Chung, S.L., Chang, C.W., Cadete Santos Aires, F.J. Reaction mechanism in combustion synthesis of α-Si3N4 powder using NaN3. J. Mater. Res. 23: 2720–2726. 2008.
    47. Piao, X., Horikawa, T., Hanzawa, H., Machida, K.I. Photoluminescence properties of Ca2Si5N8:Eu2+ nitride phosphor prepared by carbothermal reduction and nitridation method. Chem. Lett. 35: 334–335. 2006.
    48. Zeuner, M., Hintze, F., Schnick, W. Low temperature precursor route for highly efficient spherically shaped LED-phosphors M2Si5N8:Eu2+ (M = Eu, Sr, Ba). Chem. Mater. 21: 336–342. 2008.
    49. Kim, Y.S., Choi, S.W., Park, J.H., Bok, E., Kim, B.K., Hong, S.H. Redemitting (Sr,Ca)AlSiN3:Eu2+ phosphors synthesized by spark plasma sintering. ECS J. Solid State Sci. Technol. 2: R3021–R3025. 2013.
    50. Li, H.L., Xie, R.J., Hirosaki, N., Takeda, T., Zhou, G.H. Synthesis and luminescence properties of orange-red-emitting M2Si5N8:Eu2+ (M = Ca, Sr, Ba) light-emitting diode conversion phosphors by a simple nitridation of MSi2. Int. J. Appl. Ceram. Technol. 6: 459–464. 2009.
    51. Chen, C.C., Chen, W.J., Rainwater, B., Liu, L., Zhang, H., Liu, Y., Guo, X., Zhou, J., Xie, E. M2Si5N8:Eu2+-based (M = Ca, Sr) red-emitting phosphors fabricated by nitrate reduction process. Opt. Mater. 33: 1585–1590. 2011.
    52. Merzhanov, A.G., Borovinskaya, I.P. A new class of combustion processes. Combust. Sci. Technol. 10: 195–201. 1975.
    53. Hu, Y.S., Zhuang, W.D., He, H.Q., Liu, R.H., Chen, G.T., Liu, Y.H., Huang, X.W. High temperature stability of Eu2+-activated nitride red phosphors. J. Rare Earth. 32: 12–16. 2014.
    54. Li, J., Watanabe, T., Wada, H., Setoyama, T., Yoshimura, M. Low-temperature crystallization of Eu-doped red-emitting CaAlSiN3 from alloy-derived ammonometallates. Chem. Mater. 19: 3592–3594. 2007.
    55. Xie, R.J., Hirosaki, N., Sakuma, K.; Kimura, N. White light-emitting diodes (LEDs) using (oxy)nitride phosphors. J. Phys. D Appl. Phys. 2008.
    56. Kubus, M., Meyer, H.J., Anorg, Z. A Low-temperature synthesis route for CaAlSiN3 doped with Eu2+. Allg. Chem. 639: 669–672. 2013.
    57. Lei, B., Machida, K.I., Horikawa, T., Hanzawa, H. Synthesis and photoluminescence properties of CaAlSiN3:Eu2+ nanocrystals. Chem. Lett. 39: 104–105. 2010.
    58. Lin, C.C., Zheng, Y.S., Chen, H.Y., Ruan, C.H., Xiao, G.W., Liu, R.S. Improving optical properties of white LED fabricated. J. Electrochem. Soc. 157: H900–H903. 2010.
    59. Hu, W.W., Cai, C., Zhu, Q.Q., Xu, X., Hao, L.Y., Agathopoulos, S. Preparation of high performance CaAlSiN3:Eu2+ phosphors with the aid of BaF2 flux. J. Alloy. Comp. 613: 226–231. 2014.
    60. Cai, C., Qian, J., Zhang, B., Hu, W., Hao, L., Xu, X., Wang, Y. Synthesis of red-emitting CaAlSiN3:Eu2+ phosphors through a cost-effective synthetic route. ECS J. Solid State Sci. Technol. 3: R169–R172. 2014.
    61. Mercier, F., Alliot, C., Bion, L., Thromat, N., Toulhoat, P. XPS study of Eu(III) coordination compounds: Core levels binding energies in solid mixed-oxo-compounds EumXxOy. J. Electron. Spectrosc. 150: 21–26. 2006.
    62. Lacanilao, A., Wallez, G., Mazerolles, L., Dubot, P., Binet, L., Pavageau, B., Servant, L., Buissette, V., Mercier, T.L. Structural analysis of thermal degradation and regeneration in blue phosphor BaMgAl10O17:Eu2+ based upon cation diffusion. Solid. State Ionics 253: 32–38. 2013.
    63. Kang, J.G., Jung, Y., Min, B.K., Sohn, Y. Full characterization of Eu(OH)3 and Eu2O3 nanorods. Appl. Surf. Sci. 314: 158–165. 2014.
    64. Kumar, V., Kumar, V., Som, S., Duvenhage, M.M., Ntwaeaborwa, O.M., Swart, H.C. Effect of Eu doping on the photoluminescence properties of ZnO nanophosphors for red emission applications. Appl. Surf. Sci. 308: 419–430. 2014.
    65. Wang, Z., Guo, S., Li, Q., Zhang, X., Li, T., Li, P., Yang, Z., Guo, Q. Luminescent properties of Ba2SiO4:Eu3+ for white light emitting diodes. Phys. B. Condens. Matter 411: 110–113. 2013.
    66. Dexter, D.L. A theory of sensitized luminescence in solids. J. Chem. Phys. 21: 836–850. 1953.
    67. Blasse, G. Energy transfer between inequivalent Eu2+ ions. J. Solid State Chem. 62: 207–211. 1986.
    68. Li, Y.Q., Delsing, A.C., de With, A.G., Hintzen, H.T. Luminescence properties of Eu2+-activated alkaline-earth silicon-oxynitride MSi2O2-δN2+2/3δ (M = Ca, Sr, Ba): A promising class of novel LED conversion phosphors. Chem. Mater. 17: 3242–3248. 2005.
    69. Avci, N., Korthout, K., Newton, M.A., Smet, P.F., Poelman, D. Valence states of europium in CaAl2O4:Eu phosphors. Opt. Mater. Exp. 2: 321–330. 2012.
    70. Jang, B.Y., Park, J.S. Luminescence properties of Eu2O3-doped Ca2Si5N8 phosphors. J. Ceram. Process. Res. 10: 844–847. 2009.
    71. Xie, R.J., Hirosaki, N., Suehiro, T., Xu, F.F., Mamoru, M. A simple, efficient synthetic route to Sr2Si5N8:Eu2+-based red phosphors for white light-emitting diodes. Chem. Mater. 18: 5578–5583. 2006.
    72. Moreno, L.A. Absolute quantum yield measurement of powder samples. J. Vis. Exp. 63: doi:10.3791/3066. 2012.
    73. Huang, W.Y., Yoshimura, F., Ueda, K., Pang, W.K., Su, B.J., Jang, L.Y., Chiang, C.Y., Zhou, W., Duy, N.H.,Liu, R.S. Domination of second-sphere shrinkage effect to improve photoluminescence of red nitride phosphors. Inorg. Chem. 53: 12822–12831. 2014.
    74. Suehiro, T., Xie, R.J., Hirosaki, N. Gas-reduction-nitridation synthesis of CaAlSiN3:Eu2+ fine powder phosphors for solid-state lighting. Ind. Eng. Chem. Res. 53: 2713–2717. 2014.
    75. Yin, L.J., Zhu, Q.Q., Yu,W., Hao, L.Y., Xu, X., Hu, F.C., Lee, M.H. Europium location in the AlN:Eu green phosphor prepared by a gas-reduction-nitridation route. J. Appl. Phys. 111. 2012.
    76. Yin, L.J., Xu, X., Yu,W., Yang, J.G., Yang, L.X., Yang, X.F., Hao, L.Y., Liu, X.J. Synthesis of Eu2+-doped AlN phosphors by carbothermal reduction. J. Am. Ceram. Soc. 93: 1702–1707. 2010.
    77. Inoue, K., Hirosaki, N., Xie, R.J., Takeda, T. Highly efficient and thermally stable blue-emitting AlN:Eu2+ phosphor for ultraviolet white light-emitting diodes. J. Phys. Chem. C. 113: 9392–9397. 2009.
    78. Li, H.L., Hirosaki, N., Xie, R.J., Suehiro, T., Mitomo, M. Fine yellow α-SiAlON:Eu phosphors for white LEDs prepared by the gas-reduction-nitridation method. Sci. Technol. Adv. Mater. 8: 601–606. 2007.
    79. Liu, L., Zhou, X., Xie, R.J., Huang, Q. Facile synthesis of Ca-α-SiAlON:Eu2+ phosphor by the microwave sintering method and its photoluminescence properties. Chin. Sci. Bull. 58: 708–712. 2012.
    80. Ge, Y.Y., Chen, Y., Wang, Q., Cui, W., Zou, Y.F., Xie, Z.P., Yuan, X.Y.;,Chen, K.X. Effect of NH4Cl additive on combustion synthesis of Eu-doped Ca-α-SiAlON phosphors. J. Alloys Compd. 654: 404–409 2016.
    81. Li, G.H., Chen, J.J., Mao, Z.Y., Song, W.W., Sun, T., Wang, D.J. Carbothermal synthesis of CaAlSiN3:Eu2+ red-emitting phosphors and the photoluminescent properties. J Mater Sci Mater Electron. 26:10201–10206. 2015.
    82. Xie, R.J., Mitomo, M., Xu, F.F., Uheda, K., Bando, Y. Preparation of Ca-α-sialon ceramics with compositions along the Si3N4–1/2 Ca3N2:3AlN line. Z. Metallkd. 92: 931–936. 2001.
    83. Cai, J.J., Pan, H.H., Wang, Y. Luminescence properties of red-emitting Ca2Al2SiO7:Eu3+ nanoparticles prepared by sol-gel method. Rare Met. 30: 374–380. 2011.
    84. Li, Y.Q., Hirosaki, N., Xie, R.J., Takeda, T., Mitomo, M. Yellow-orange-emitting CaAlSiN3:Ce3+ phosphor:Structure, photoluminescence, and application in white LEDs. Chem. Mater. 20: 6704–6714. 2008.
    85. Dierre, B., Takeda, T., Sekiguchi, T., Suehiro, T., Takahashi, K., Yamamoto, Y., Xie, R.J., Hirosaki, N. Local analysis of Eu2+ emission in CaAlSiN3. Sci. Technol. Adv. Mater.14. 2013.
    86. Wang, Y., Zhao, F.Y., Piao, X.Q., Sun, Z., Horikawa, T., Machida, K.I. Synthesis and photoluminescence properties of divalent europium doped-CaAlSi1+2xN3+2xOx (x = 0–1) solid solution phosphors. ECS J. Solid State Sci. Technol. 2: R131–R134. 2013.
    87. Li, S.X., Liu, X.J., Liu, J.Q., Li, H.L., Mao, R.H., Huang, Z.R., Xie, R.J. Synthesis, composition optimization,and tunable red emission of CaAlSiN3:Eu2+ phosphors for white light-emitting diodes. J. Mater. Res. 30: 2919–2927. 2015.
    88. Xie, R.J., Mitomo, M., Uheda, K., Xu, F.F., Akimune, Y. Preparation and luminescence spectra of calciumand rare-earth (R = Eu,Tb, and Pr)-codoped α-SiAlON ceramics. J. Am. Ceram. Soc. 85: 1229–1234. 2002.
    89. Xie, R.J., Hirosaki, N. Silicon-based oxynitride and nitride phosphors for white LEDs—A review. Sci. Technol.Adv. Mater. 8: 588–600. 2007.
    90. Zeuner, M., Pagano, S., Schnick, W. Nitridosilicates and oxonitridosilicates: From ceramic materials to structural and functional diversity. Angew. Chem. Int. Ed. Engl. 50: 7754–7775. 2011.

    下載圖示 校內:立即公開
    校外:立即公開
    QR CODE