簡易檢索 / 詳目顯示

研究生: 馮奕亭
Feng, I-Ting
論文名稱: 應用於抑制癲癇發作含有電容共用殘餘電荷偵測及主動電荷平衡之電荷式神經刺激器
A Charge-mode Neural Stimulator Based on Capacitor-reused Residual Charge Detector with Active Charge Balancing for Epileptic Seizure Suppression
指導教授: 李順裕
Lee, Shuenn-Yuh
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 電機工程學系
Department of Electrical Engineering
論文出版年: 2023
畢業學年度: 111
語文別: 中文
論文頁數: 92
中文關鍵詞: 電荷式神經刺激器電容共用殘餘電荷偵測器主動電荷平衡癲癇發作抑制
外文關鍵詞: Charge-mode neural stimulator, Capacitor-resued, Residual charge detector, Active charge balancing, Epileptic seizure suppression
相關次數: 點閱:41下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文提出一個應用於電刺激系統之含有電容共用殘餘電荷偵測電路同時達到主動電荷平衡之電荷模式刺激器,主要應用於癲癇抑制,使發作之時可以即時的做症狀減緩的效果。在電路實作及系統應用層面同時考量之下,希望降低電路設計複雜度,並且考慮到電晶體耐壓以及未來系統整合的製程問題,因而採用電荷模式刺激為研究方向。本論文電路特點為擁有殘餘電荷偵測器合併於電刺激器當中,讓使用者可以得知實際刺激到電極阻抗上的電荷量,進而可以針對刺激參數進行最佳化的調整,同時加入主動電荷平衡技術使電荷刺激器在不同的阻抗大小情況之下都可以由電路內部主動地去達成陰極以及陽極電荷的補償,避免電荷累積在電極阻抗上造成電極溶解以及周圍組織受損的風險。由於刺激電路以及殘餘電荷偵測器的共通點為都需要電容且進行充放電荷的動作,因此決定使用電容及相位共用技巧將電路進行合併來達成同時可以進行殘餘電荷檢測的電荷刺激器,藉此使電路可以更為精簡且整合。
    本論文之晶片實現使用了TSMC 0.18 μm 1P6M的製程,刺激時序以及參數使用FPGA進行數位控制,從量測的結果可以驗證刺激動作以及時序上的正確性,並且波型為指數型衰減的刺激波型,相較於矩形刺激波型擁有較好的功率效率。刺激器量測參數使用1μF大小的刺激電容,陰極刺激脈波寬設定為 2000 μs ,刺激的頻率為100 Hz的情況下,對電極阻抗RC串聯模型為 1kΩ+1μF 進行刺激驗證,在此條件之下,陰陽極的電荷誤差量為0.38 %,而動態功率消耗的部分為1.2204 mW。整體刺激參數為可程式化的調整,針對刺激電容的刺激總量上限之調變、陰極刺激的脈波寬度調變以及刺激頻率之調變,皆可於量測結果中顯示其功能性。同時此電路晶片也於實務應用上進行體內動物實驗 ( in-vivo ) 的驗證,從實驗結果顯示出電路晶片對於癲癇抑制的效果,也證明了本論文所提出的電路於系統應用上之有效性。此外,將實驗結果與先前電流模式刺激器進行比較,觀察出電流刺激在刺激抑制期間會有比較大的artifact且需要一段穩定時間才能由腦波進行抑制效果的觀察,相比之下電荷刺激的artifact較為輕微並且將刺激區間進行放大可以直接觀察刺激區間的腦波變化,於EEG進行腦波觀察的過程與電流刺激器相比是相對有優勢存在的。

    This paper proposes a charge-mode stimulator for use in an electrical stimulation system, which utilizes a capacitor-reused technique in residual charge detector and achieve active charge balancing simultaneously. The design is mainly used for epilepsy suppression systems, with the aim of achieving real-time symptom relief during seizures. Taking into account the complexity of the circuit design, the high voltage tolerant of transistors, and system integration requirements in the future, a charge-mode stimulator is adopted. The residual charge detector allows users to understand the current stimulus situation, enabling them to make optimal adjustments to the stimulation parameters. Based on the information of the actual stimulation charge, the active charge balancing can effectively prevent the accumulation of mismatched charges on the electrode impedance. Considering the commonality of the use of capacitor and charging/discharging phase in stimulation circuit and charge detector, capacitor-reused and phase-reused techniques contribute to achieving greater integration of the overall stimulator circuit. The proposed charge mode stimulator has been implemented in a 0.18 μm 1P6M CMOS process with core area of 0.2127 mm2. The measurement results demonstrate the accuracy of the stimulation functionality, and the programmable stimulus parameters. The effectiveness of the proposed charge mode stimulation for the epileptic seizure suppression has also been verified through animal experiments.

    摘要 I 誌謝 XIII 章節目錄 XIV 表目錄 XVII 圖目錄 XVIII 第一章 緒論 1 1.1 研究背景 1 1.2 研究動機與目的 1 1.3 章節架構 3 第二章 癲癇與電刺激器介紹 4 2.1 癲癇介紹 4 2.2 腦電圖 5 2.3 癲癇治療 7 2.4 電刺激器介紹 8 2.4.1 電刺激器發展與原理 8 2.4.2 電流式刺激器 9 2.4.3 電壓式刺激器 10 2.4.4 電荷式刺激器 10 2.4.5 植入式電刺激器應用 11 2.5 動物實驗與系統驗證 11 2.5.1 電極植入手術 12 2.5.2 電刺激實驗之設置與流程 13 2.5.3 電刺激實驗之結果 15 第三章 含有電容共用殘餘電荷偵測器及主動電荷平衡之電荷模式神經刺激器的架構與設計 22 3.1 刺激模式選用之考量 22 3.2 提出電路之架構概述 26 3.3 刺激與殘餘電荷偵測合併電路 28 3.3.1 電荷刺激電路 28 3.3.2 殘餘電荷偵測電路 29 3.3.2.1 積分型單斜率類比數位轉換器 31 3.3.2.2 積分型雙斜率類比數位轉換器 33 3.3.3 刺激與殘餘電荷偵測之合併電路 34 3.4 電荷式刺激器之設計流程與時序動作說明 36 3.5 含有電容共用之電荷式刺激器電路設計與實現 42 3.5.1 開關電路 42 3.5.2 運算放大器 44 3.5.3 比較器 47 3.5.4 計數器 50 3.5.5 數位類比轉換器 50 3.5.6 電荷平衡器 52 3.5.7 數位控制器 54 3.5.8 數位邏輯電路 56 3.6 電荷刺激合併殘餘電荷偵測電路之佈局前模擬結果 56 3.6.1 電荷刺激器佈局前模擬結果 56 3.6.2 運算放大器佈局前模擬結果 59 3.6.3 混合式數位類比轉換器佈局前模擬結果 61 3.7 電荷刺激合併殘餘電荷偵測電路之佈局後模擬結果 62 3.7.1 電荷刺激器佈局後模擬結果 64 3.7.2 運算放大器佈局後模擬結果 65 3.7.3 混合式數位類比轉換器佈局後模擬結果 67 第四章 晶片量測考量與結果 70 4.1 晶片封裝與腳位 70 4.2 量測環境的設置與考量 71 4.3 晶片量測結果 75 4.4 文獻比較 82 4.5 動物實驗結果 82 第五章 結論與未來展望 86 參考文獻 87 口試委員建議與回覆 90

    [1] W. H. Organization. "Epilepsy." https://www.who.int/news-room/fact-sheets/detail/epilepsy (accessed 2023).
    [2] I. E. Scheffer et al., "ILAE classification of the epilepsies: Position paper of the ILAE Commission for Classification and Terminology," (in eng), Epilepsia, vol. 58, no. 4, pp. 512-521, Apr. 2017, doi: 10.1111/epi.13709.
    [3] R. S. Fisher et al., "Operational classification of seizure types by the International League Against Epilepsy: Position Paper of the ILAE Commission for Classification and Terminology," (in eng), Epilepsia, vol. 58, no. 4, pp. 522-530, Apr. 2017, doi: 10.1111/epi.13670.
    [4] J. Malmivuo and R. Plonsey, Bioelectromagnetism: Principles and Applications of Bioelectric and Biomagnetic Fields. Oxford University Press, 1995.
    [5] IQWiG. "What happens during an electroencephalogram (EEG)?" Institute for Quality and Efficiency in Health Care (IQWiG, Germany). https://www.informedhealth.org/what-happens-during-an-electroencephalogram-eeg.html (accessed 2023).
    [6] S. J. M. Smith, "EEG in the diagnosis, classification, and management of patients with epilepsy," Journal of Neurology, Neurosurgery & Psychiatry, vol. 76, no. suppl 2, pp. ii2-ii7, 2005, doi: 10.1136/jnnp.2005.069245.
    [7] S. Nadkarni, J. LaJoie, and O. Devinsky, "Current treatments of epilepsy," (in eng), Neurology, vol. 64, no. 12 Suppl 3, pp. S2-11, Jun. 28 2005, doi: 10.1212/wnl.64.12_suppl_3.s2.
    [8] J. Freeman, P. Veggiotti, G. Lanzi, A. Tagliabue, and E. Perucca, "The ketogenic diet: from molecular mechanisms to clinical effects," (in eng), Epilepsy Res, vol. 68, no. 2, pp. 145-80, Feb. 2006, doi: 10.1016/j.eplepsyres.2005.10.003.
    [9] E. G. Neal et al., "The ketogenic diet for the treatment of childhood epilepsy: a randomised controlled trial," (in eng), Lancet Neurol, vol. 7, no. 6, pp. 500-6, Jun. 2008, doi: 10.1016/s1474-4422(08)70092-9.
    [10] G. K. Bergey, "Neurostimulation in the treatment of epilepsy," (in eng), Exp Neurol, vol. 244, pp. 87-95, Jun. 2013, doi: 10.1016/j.expneurol.2013.04.004.
    [11] P. Boon, E. De Cock, A. Mertens, and E. Trinka, "Neurostimulation for drug-resistant epilepsy: a systematic review of clinical evidence for efficacy, safety, contraindications and predictors for response," (in eng), Curr Opin Neurol, vol. 31, no. 2, pp. 198-210, Apr. 2018, doi: 10.1097/wco.0000000000000534.
    [12] J. Zabara, "Inhibition of experimental seizures in canines by repetitive vagal stimulation," (in eng), Epilepsia, vol. 33, no. 6, pp. 1005-12, Nov.-Dec. 1992, doi: 10.1111/j.1528-1157.1992.tb01751.x.
    [13] A. Hartshorn and B. Jobst, "Responsive brain stimulation in epilepsy," (in eng), Ther Adv Chronic Dis, vol. 9, no. 7, pp. 135-142, Jul. 2018, doi: 10.1177/2040622318774173.
    [14] E. Kiriakopoulos. "Deep Brain Stimulation." Epilepsy Foundation. https://www.epilepsy.com/ (accessed 2023).
    [15] M. A. Mirski, L. A. Rossell, J. B. Terry, and R. S. Fisher, "Anticonvulsant effect of anterior thalamic high frequency electrical stimulation in the rat," (in eng), Epilepsy Res, vol. 28, no. 2, pp. 89-100, Sep. 1997, doi: 10.1016/s0920-1211(97)00034-x.
    [16] K. D. Graber and R. S. Fisher, "Deep Brain Stimulation for Epilepsy: Animal Models," in Jasper's Basic Mechanisms of the Epilepsies, J. L. Noebels, M. Avoli, M. A. Rogawski, R. W. Olsen, and A. V. Delgado-Escueta Eds. Bethesda (MD): National Center for Biotechnology Information (US), 2012.
    [17] T. Wyckhuys, P. J. Geerts, R. Raedt, K. Vonck, W. Wadman, and P. Boon, "Deep brain stimulation for epilepsy: knowledge gained from experimental animal models," (in eng), Acta Neurol Belg, vol. 109, no. 2, pp. 63-80, Jun. 2009.
    [18] P. L. Gildenberg, "History of Electrical Neuromodulation for Chronic Pain," Pain Medicine, vol. 7, no. suppl_1, pp. S7-S13, 2006, doi: 10.1111/j.1526-4637.2006.00118.x.
    [19] M. LibreTexts. "10.5E: The Action Potential and Propagation." https://med.libretexts.org/Bookshelves/Anatomy_and_Physiology/Book%3A_Anatiomy_and_Physiology_(Boundless)/10%3A_Overview_of_the_Nervous_System/10.5%3A_Neurophysiology/10.5E%3A_The_Action_Potential_and_Propagation (accessed 2023).
    [20] J. Simpson and M. Ghovanloo, "An Experimental Study of Voltage, Current, and Charge Controlled Stimulation Front-End Circuitry," in 2007 IEEE International Symposium on Circuits and Systems, 27-30 May 2007, pp. 325-328, doi: 10.1109/ISCAS.2007.378401.
    [21] R. Ranjandish and A. Schmid, "A compact size charge-mode stimulator using a low-power active charge balancing method for deep brain stimulation (DBS)," in 2017 IEEE Biomedical Circuits and Systems Conference (BioCAS), 19-21 Oct. 2017 2017, pp. 1-4, doi: 10.1109/BIOCAS.2017.8325121.
    [22] D. R. Merrill, M. Bikson, and J. G. Jefferys, "Electrical stimulation of excitable tissue: design of efficacious and safe protocols," (in eng), J Neurosci Methods, vol. 141, no. 2, pp. 171-98, Feb 15 2005, doi: 10.1016/j.jneumeth.2004.10.020.
    [23] W. E. Lee et al., "Intelligent Wireless EEG Measurement System With Electrical and Optogenetic Stimulation for Epileptic Seizure Detection and Suppression," IEEE Access, vol. 9, pp. 80264-80274, 2021, doi: 10.1109/ACCESS.2021.3083772.
    [24] Z. Luo and M. D. Ker, "A High-Voltage-Tolerant and Precise Charge-Balanced Neuro-Stimulator in Low Voltage CMOS Process," IEEE Transactions on Biomedical Circuits and Systems, vol. 10, no. 6, pp. 1087-1099, 2016, doi: 10.1109/TBCAS.2015.2512443.
    [25] H. C. Hong, L. Y. Lin, and C. J. Liu, "Design of an on-scribe-line 12-bit dual-slope ADC for wafer acceptance test," in 2017 International Conference on Applied System Innovation (ICASI), 13-17 May 2017 2017, pp. 1751-1754, doi: 10.1109/ICASI.2017.7988280.
    [26] C.-C. Liu, S.-J. Chang, G.-Y. Huang, and Y.-Z. Lin, "A 10-bit 50-MS/s SAR ADC With a Monotonic Capacitor Switching Procedure," IEEE Journal of Solid-State Circuits, vol. 45, no. 4, pp. 731-740, 2010, doi: 10.1109/jssc.2010.2042254.
    [27] I. Williams and T. G. Constandinou, "An Energy-Efficient, Dynamic Voltage Scaling Neural Stimulator for a Proprioceptive Prosthesis," IEEE Transactions on Biomedical Circuits and Systems, vol. 7, no. 2, pp. 129-139, 2013, doi: 10.1109/TBCAS.2013.2256906.
    [28] D. Jiang and A. Demosthenous, "A Multichannel High-Frequency Power-Isolated Neural Stimulator With Crosstalk Reduction," IEEE Transactions on Biomedical Circuits and Systems, vol. 12, no. 4, pp. 940-953, 2018, doi: 10.1109/TBCAS.2018.2832541.
    [29] Y. Wu, D. Jiang, and A. Demosthenous, "A Multi-Channel Stimulator With High-Resolution Time-to-Current Conversion for Vagal-Cardiac Neuromodulation," IEEE Transactions on Biomedical Circuits and Systems, vol. 15, no. 6, pp. 1186-1195, 2021, doi: 10.1109/TBCAS.2021.3139996.
    [30] H. M. Lee, K. Y. Kwon, W. Li, and M. Ghovanloo, "A Power-Efficient Switched-Capacitor Stimulating System for Electrical/Optical Deep Brain Stimulation," IEEE Journal of Solid-State Circuits, vol. 50, no. 1, pp. 360-374, 2015, doi: 10.1109/JSSC.2014.2355814.
    [31] W. Y. Hsu and A. Schmid, "Compact, Energy-Efficient High-Frequency Switched Capacitor Neural Stimulator With Active Charge Balancing," IEEE Transactions on Biomedical Circuits and Systems, vol. 11, no. 4, pp. 878-888, 2017, doi: 10.1109/TBCAS.2017.2694144.

    無法下載圖示 校內:2028-07-06公開
    校外:2028-07-06公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE