簡易檢索 / 詳目顯示

研究生: 郭文瑋
Guo, Wen-Wei
論文名稱: 單相多階層飛馳電容型功率因數修正器之研製
Implementation of Single-Phase Multilevel Flying-Capacitor Power Factor Corrector
指導教授: 李嘉猷
Lee, Jia-You
李祖聖
Li, Tzuu-Hseng S.
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 電機工程學系
Department of Electrical Engineering
論文出版年: 2024
畢業學年度: 112
語文別: 中文
論文頁數: 140
中文關鍵詞: 單相多階層功率因數修正轉換器平均電流控制法相移脈波寬度調變
外文關鍵詞: single-phase multilevel PFC, average current control method, phase-shift pulse width modulation (PSPWM)
相關次數: 點閱:48下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文旨在研製一單相多階層飛馳電容型功率因數修正器,其架構優點為高功率密度、低開關電壓應力與低開關切換損失等。開關元件採用寬能隙功率半導體開關SiC,相較矽基功率半導體元件於相同切換頻率下有較低的功率損失,且其可操作於更高頻以達到更好的功率密度和效率。文中針對採用之電路架構進行模式分析,以及設計整體硬體電路,並基於功率因數修正技術之平均電流控制法,設計電流迴路控制器與電壓迴路控制器,以達到功率因數修正之效果與維持輸出電壓,且於原控制策略中結合相移脈波寬度調變技術使飛馳電容電壓可自然平衡於目標電壓,以得到降低開關電壓應力之特性。最後,透過電路模擬軟體驗證整體電路系統設計之可行性與正確性,以及實驗結果驗證整體電路系統在300 kHz切換頻率與單相110 V/ 60 Hz交流輸入下,輸出電壓為±200 V,且最大輸出功率約1 kW,此時系統效率約為95.12%,而功率因數約為0.941。

    This thesis aims to implement a single-phase multilevel flying-capacitor power factor corrector (PFC) with advantages such as high-power density, reduced switching voltage stress, and low switching losses. SiC (Silicon Carbide) wide-bandgap (WBG) semiconductors are employed, which, compared to silicon-based devices, exhibit lower power losses and enable operation at higher frequencies, thereby achieving better power density and efficiency. The thesis includes detailed mode analysis and hardware design of the circuit. Average current control is utilized for power factor correction, with the design of current and voltage loop controllers to ensure power factor correction and maintain output voltage. Phase-shifted pulse width modulation (PSPWM) is integrated to naturally achieve the target flying capacitor voltage and further reduce switching voltage stress. The feasibility and accuracy of the design are verified through simulations and experimental results, which demonstrate operation at a switching frequency of 300 kHz with a single-phase 110 V/60 Hz AC input, an output voltage of ±200 V, a maximum output power of a 1 kW, an efficiency of about 95.12%, and a power factor of 0.941.

    中文摘要 I 英文摘要 II 英文延伸摘要 III 誌謝 X 目錄 XI 表目錄 XIII 圖目錄 XIV 第一章 緒論 1 1-1 研究動機與目的 1 1-2 研究背景 3 1-3 研究方法 7 1-4 論文大綱 8 第二章 單相多階層功率因數修正轉換器架構分析 9 2-1 單相多階層功率因數修正轉換器架構分析與探討 9 2-2 單相多階層功率因數修正轉換器電路架構選擇 17 第三章 單相多階層飛馳電容型功率因數修正器架構分析與控制策略 19 3-1 單相多階層飛馳電容型功率因數修正器快速切換臂開關duty ratio推導與開關控制訊號時序分析 19 3-2 單相多階層飛馳電容型功率因數修正器正半週模式分析 27 3-3 單相多階層飛馳電容型功率因數修正器控制架構 65 第四章 硬體電路與數位控制設計 74 4-1 單相多階層飛馳電容型功率因數修正器電路設計 74 4-2 單相多階層飛馳電容型功率因數修正器感測電路設計 84 4-3 整體電路系統數位控制設計 91 第五章 電路模擬與實驗結果 97 5-1 單相多階層飛馳電容型功率因數修正器模擬波形分析 97 5-2 單相多階層飛馳電容型功率因數修正器實驗波形量測 108 第六章 結論與未來研究方向 113 6-1 結論 113 6-2 未來研究方向 114 參考文獻 115

    [1] B. Li, Q. Li, F. C. Lee, Z. Liu, and Y. Yang, "A high-efficiency high-density wide-bandgap device-based bidirectional on-board charger," IEEE J. Emerging Sel. Top. Power Electron., vol. 6, no. 3, pp. 1627-1636, Sept. 2018.
    [2] Z. Liu, B. Li, F. C. Lee, and Q. Li, "High-efficiency high-density critical mode rectifier/inverter for WBG-device-based on-board charger," IEEE Trans. Ind. Electron., vol. 64, no. 11, pp. 9114-9123, Nov. 2017.
    [3] J. Baek, J. -K. Kim, J. -B. Lee, M. -H. Park, and G. -W. Moon, "A new standby structure integrated with boost PFC converter for server power supply," IEEE Trans. Power Electron., vol. 34, no. 6, pp. 5283-5293, June 2019.
    [4] T. Nussbaumer, K. Raggl, and J. W. Kolar, "Design guidelines for interleaved single-phase boost PFC circuits," IEEE Trans. Ind. Electron., vol. 56, no. 7, pp. 2559-2573, July 2009.
    [5] S. Singh, B. Singh, G. Bhuvaneswari, and V. Bist, "A power quality improved bridgeless converter-based computer power supply," IEEE Trans. Ind. Appl., vol. 52, no. 5, pp. 4385-4394, Sept.-Oct. 2016.
    [6] V. M. López-Martín, F. J. Azcondo, and A. Pigazo, "Power quality enhancement in residential smart grids through power factor correction Stages," IEEE Trans. Ind. Electron., vol. 65, no. 11, pp. 8553-8564, Nov. 2018.
    [7] W. Chen, F. C. Lee, and T. Yamauchi, "An improved "charge pump" electronic ballast with low THD and low crest factor," IEEE Trans. Power Electron., vol. 12, no. 5, pp. 867-875, Sept. 1997.
    [8] Z. Liu, F. C. Lee, Q. Li, and Y. Yang, "Design of GaN-based MHz totem-pole PFC rectifier," IEEE J. Emerging Sel. Top. Power Electron., vol. 4, no. 3, pp. 799-807, Sept. 2016.
    [9] Y. Zhang et al., "A SiC and Si hybrid five-level unidirectional rectifier for medium voltage applications," IEEE Trans. Ind. Electron., vol. 69, no. 8, pp. 7537-7548, Aug. 2022.
    [10] M. Najjar, A. Kouchaki, J. Nielsen, R. Dan Lazar, and M. Nymand, "Design procedure and efficiency analysis of a 99.3% efficient 10 kW three-phase three-level hybrid GaN/Si active neutral point clamped converter," IEEE Trans. Power Electron., vol. 37, no. 6, pp. 6698-6710, June 2022.
    [11] J. L. Hudgins, "Power electronic devices in the future," IEEE J. Emerging Sel. Top. Power Electron., vol. 1, no. 1, pp. 11-17, March 2013.
    [12] K. Shenai, "Future prospects of widebandgap (WBG) semiconductor power switching devices," IEEE Trans. Electron Devices, vol. 62, no. 2, pp. 248-257, Feb. 2015.
    [13] J. Millán, P. Godignon, X. Perpiñà, A. Pérez-Tomás, and J. Rebollo, "A survey of wide bandgap power semiconductor devices," IEEE Trans. Power Electron., vol. 29, no. 5, pp. 2155-2163, May 2014.
    [14] E. A. Jones, F. F. Wang, and D. Costinett, "Review of commercial GaN power devices and GaN-based converter design challenges," IEEE J. Emerging Sel. Top. Power Electron., vol. 4, no. 3, pp. 707-719, Sept. 2016.
    [15] L. Zhou, Y. Wu, J. Honea, and Z. Wang, “High-efficiency true bridgeless totem pole PFC based on GaN HEMT: Design challenges and cost-effective solution,” in Proc. PCIM Eur., Int. Exhib. Conf. Power Electron., Intell. Motion, Renew. Energy Energy Manage., 2015, pp. 1-8.
    [16] Jih-Sheng Lai and Fang Zheng Peng, "Multilevel converters-a new breed of power converters," IEEE Trans. Ind. Appl. , vol. 32, no. 3, pp. 509-517, May-June 1996.
    [17] J. Rodriguez, Jih-Sheng Lai, and Fang Zheng Peng, "Multilevel inverters: a survey of topologies, controls, and applications," IEEE Trans. Ind. Electron., vol. 49, no. 4, pp. 724-738, Aug. 2002.
    [18] B. P. McGrath and D. G. Holmes, "Natural capacitor voltage balancing for a flying capacitor converter induction motor drive," IEEE Trans. Power Electron., vol. 24, no. 6, pp. 1554-1561, June 2009.
    [19] S. Kouro et al., "Recent Advances and industrial applications of multilevel converters," IEEE Trans. Ind. Electron., vol. 57, no. 8, pp. 2553-2580, Aug. 2010.
    [20] H. Vahedi, A. A. Shojaei, A. Chandra, and K. Al-Haddad, "Five-level reduced-switch-count boost PFC rectifier with multicarrier PWM," IEEE Trans. Ind. Appl., vol. 52, no. 5, pp. 4201-4207, Sept.-Oct. 2016.
    [21] J. -S. Kim, S. -H. Lee, W. -J. Cha, and B. -H. Kwon, "High-efficiency bridgeless three-level power factor correction rectifier," IEEE Trans. Ind. Electron., vol. 64, no. 2, pp. 1130-1136, Feb. 2017.
    [22] S. Qin, Y. Lei, Z. Ye, D. Chou, and R. C. N. Pilawa-Podgurski, "A high-power-density power factor correction front end based on seven-level flying capacitor multilevel converter," IEEE J. Emerging Sel. Top. Power Electron., vol. 7, no. 3, pp. 1883-1898, Sept. 2019.
    [23] M. Andrey Freitas de Souza Kohler and D. Flores Cortez, "Single-phase five-level flying-capacitor rectifier using three switches," IEEE Open J. Power Electron., vol. 1, pp. 383-392, 2020.
    [24] D. Menzi, S. Weihe, J. A. Anderson, J. Everts, and J. W. Kolar, "Single-phase PFC rectifier with integrated flying capacitor power pulsation buffer," IEEE Open J. Power Electron., vol. 3, pp. 866-875, 2022.
    [25] T. T. Vu and G. Young, “Implementation of multi-level bridgeless PFC rectifiers for mid-power single phase applications,” in Proc. IEEE Appl. Power Electron. Conf. Expo., 2016, pp. 1835-1841.
    [26] Q. Huang, Q. Ma, P. Liu, A. Q. Huang, and M. de Rooij, “3kW four-level flying capacitor totem-pole bridgeless PFC rectifier with 200 V GaN devices,” in Proc. IEEE Energy Convers. Congr. Expo. (ECCE), Sep. 2019, pp. 81–88.
    [27] Q. Huang, Q. Ma, P. Liu, A. Q. Huang, and M. A. de Rooij, "99% efficient 2.5-kW four-level flying capacitor multilevel GaN totem-pole PFC," IEEE J. Emerging Sel. Top. Power Electron., vol. 9, no. 5, pp. 5795-5806, Oct. 2021.
    [28] Q. Ma, Q. Huang, and A. Q. Huang, ‘‘Dual-loop high speed voltage balancing control for high frequency four-level GaN totem-pole PFC with small flying capacitors,’’ in Proc. IEEE Energy Convers. Congr. Expo. (ECCE), Oct. 2020, pp. 6218-6225.
    [29] Y. Xu, J. Wang, K. Xiong, and G. Yin, "A novel 5-level flying capacitor bridgeless PFC converter based on cost-effective low-voltage eGaN FETs," Chin. J. Electr. Eng., vol. 6, no. 3, pp. 56-64, Sept. 2020.
    [30] E. B. Bulut, D. A. Kocabas, and S. Dusmez, "Optimization and Design Considerations of GaN-Based Multi-Level TP PFC Converters," IEEE Access, vol. 11, pp. 47291-47303, 2023.
    [31] A. Tausif and S. Dusmez, "A unified differential mode noise estimation method and filter size comparison in single-phase multileg and multilevel totem-pole PFC converters," IEEE Trans. Power Electron., vol. 38, no. 6, pp. 7197-7206, June 2023.
    [32] N. Ishraq and A. Mallik, "Design of a 2.5 kW four-level interleaved flying capacitor multilevel totem-pole PFC converter with AC-side passive volume optimization," IEEE Open J. Power Electron., vol. 5, pp. 214-231, 2024.
    [33] F. C. Lee, Q. Li, Z. Liu, Y. Yang, C. Fei, and M. Mu, "Application of GaN devices for 1 kW server power supply with integrated magnetics," CPSS Trans. Power Electron. Appl., vol. 1, no. 1, pp. 3-12, Dec. 2016.
    [34] C. Zhang, K. Qu, B. Hu, J. Wang, X. Yin, and Z. J. Shen, "A high-frequency dynamically coordinated hybrid Si/SiC interleaved CCM totem-pole bridgeless PFC converter," IEEE J. Emerging Sel. Top. Power Electron., vol. 10, no. 2, pp. 2088-2100, April 2022.
    [35] D. M. Mitchell, “AC-DC converter having an improved power factor,” U.S. Patent 4 412 277, Oct. 25, 1983.
    [36] J. W. M. Soares and A. A. Badin, "High-efficiency interleaved totem-pole PFC converter with voltage follower characteristics," IEEE J. Emerging Sel. Top. Power Electron., vol. 11, no. 2, pp. 1879-1887, April 2023.
    [37] L. Xue, Z. Shen, D. Boroyevich, and P. Mattavelli, “GaN-based high frequency totem-pole bridgeless PFC design with digital implementation,”in Proc. IEEE Appl. Power Electron. Conf. Expo., 2015, pp. 759–766.
    [38] Z. Ye, Y. Lei, Z. Liao, and R. C. N. Pilawa-Podgurski, "Investigation of capacitor voltage balancing in practical implementations of flying capacitor multilevel converters," IEEE Trans. Power Electron., vol. 37, no. 3, pp. 2921-2935, March 2022.
    [39] Zheren Lai and K. M. Smedley, "A family of continuous-conduction-mode power-factor-correction controllers based on the general pulse-width modulator," IEEE Trans. Power Electron., vol. 13, no. 3, pp. 501-510, May 1998.
    [40] J. Rajagopalan, F. C. Lee, and P. Nora, "A general technique for derivation of average current mode control laws for single-phase power-factor-correction circuits without input voltage sensing," IEEE Trans. Power Electron., vol. 14, no. 4, pp. 663-672, July 1999.
    [41] F. A. Huliehel, F. C. Lee, and B. H. Cho, "Small-signal modeling of the single-phase boost high power factor converter with constant frequency control," in Proc. IEEE Power Electron. Spec. Conf., 1992, pp. 475-482 vol.1.
    [42] Freescale Semiconductor, “Average current mode interleaved PFC control”, Feb. 2016. [Online]. Available: https://www.nxp.com/docs/en/application-note/AN5257.pdf
    [43] 3F36 Datasheet, Ferroxcube, 2013.
    [44] PQ40/40 Datasheet, Ferroxcube, 2016.
    [45] MULTILAYER CERAMIC CHIP CAPACITORS Datasheet, TDK Electronics, 2023.
    [46] Infineon Technologies, “CoolSiC™ totem-pole PFC design guide and power loss modeling”, Feb. 2023. [Online]. Available: Application note CoolSiC™ totem-pole PFC design guide and power loss modeling (infineon.com)
    [47] G3R30MT Datasheet, GeneSiC Semiconductor, 2021.
    [48] GD50MPS12H Datasheet, GeneSiC Semiconductor, 2021.
    [49] SI8271BB-IS Datasheet, Skyworks, 2022.
    [50] R24P21503D Datasheet, RECOM power, 2020.
    [51] AMC1350DWVR Datasheet, Texas Instruments, 2021.
    [52] DCH010505SN7 Datasheet, Texas Instruments, 2020.
    [53] OPA320 Datasheet, Texas Instruments, 2016.
    [54] ACS733 Datasheet, ALLEGRO, 2019.
    [55] TMS320F28379D Datasheet, Texas Instruments, 2013.

    無法下載圖示 校內:2029-08-17公開
    校外:2029-08-17公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE