簡易檢索 / 詳目顯示

研究生: 陳文瑞
Chen, Wen-Ray
論文名稱: 以分子束磊晶法所成長的銻摻雜II-VI族化合物半導體的結構以及光特性研究和其在金半金檢光二極體和混色發光二極體的應用
Structural and Optical Characterization of Te-doped II-VI Compound Semiconductors Grown by Molecular Beam Epitaxy and Application on Metal-Semiconductor-Metal Photodetectors and Mixed-color Light Emitting Diodes
指導教授: 蘇炎坤
Su, Yan-Kuin
張守進
Chang, Shoou-Jinn
藍文厚
Lan, Wen-How
學位類別: 博士
Doctor
系所名稱: 電機資訊學院 - 電機工程學系
Department of Electrical Engineering
論文出版年: 2002
畢業學年度: 90
語文別: 英文
論文頁數: 256
中文關鍵詞: 金半金檢測器混色發光二極體二六族化合物半導體分子束磊晶成長
外文關鍵詞: Mixed color light emitting diode, II-VI compound semiconductor, MSM photodetector, MBE
相關次數: 點閱:99下載:4
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 在本論文中,我們利用分子束磊晶法在蝕刻過的砷化鎵基板上長出高品質的硒化鋅緩衝層,並且在去氧化層時具有(4×1)的重建圖形,我們發現在雙晶x射線繞射分析中,硒化鋅緩衝層的週期性脈波數超過六,而且尖峰位置距砷化鎵800秒,這相當於是完全應力的情況。另外,關於臨界厚度值的量測,從x射線資料和從光激螢光譜求出的分別是1700埃和800埃,我們認為從光激螢光譜求臨界厚度較準確。
    關於高品質的ZnSeTe/ZnSe量子井的成長和研究方面,在ZnSe0.99Te0.01中的束縛激子發光能量為2.67eV,5QW和3QW具有半高寬分別為184meV和171meV。若和晶格常數不匹配的ZnSeTe薄膜相比較,成長在ZnSe/GaAs層上的高品質ZnSSeTe乃是藉由將S元素加到磊晶層中而得以實現。我們發現ZnSSeTe的光激螢光譜變化對S元素較不敏感、對Te元素較敏感,我們也發現ZnSSeTe磊晶層不僅具有高品質而且能保有Ten束縛態的發光特性,再者,我們已畫出15K時ZnSSeTe磊晶層的一維組態座標圖,同時也比較ZnCdSeTe/GaAs系統和ZnSeTe/GaAs系統的晶格格子,我們認為ZnSSeTe磊晶層適合厚膜的應用。
    對於n-型摻雜,在溫度120℃到160℃之間,淨施體載子的對數濃度和溫度有線性關係。當摻雜濃度從3×1018 cm-3 增加到 1.2×1019 cm-3時,在2.1eV的相對深層譜線增加約一百倍,另外,在摻雜高到1.2×1019 cm-3時,I2譜線的尖峰從2.8eV飄移到2.82eV,而且譜線變寬了,我們認為這是高摻雜在導帶和施體中建立起連續的能階所致。在另外一方面,當功率由110W增加到140W時,淨受體載子濃度漸漸飽和,在140W時,淨受體載子濃度為8×1017 cm-3,而且此值跟功率無關。關於接觸電極的研究,我們研究Au/AuBe和Au/AuBe/Cr的熱穩定度,並且發現在Au/AuBe中Zn擴散到樣品表面是電阻率增加的主因,換句話說,Au/AuBe/Cr具有可靠的熱穩定度適合元件的應用。
    在Te的應用方面,分子束磊晶成長的高品質四元ZnSSeTe磊晶層首次被用來製作金半金光檢測器,我們發現元件操作在10V的反偏壓下,光電流對暗電流的對比超過十萬倍,最大的光響應是0.4A/W。另外,我們首次將濺鍍機成長的ITO膜鍍在n-ZnMgSSe上,用以製作金半金光檢測器,我們亦發現元件操作在10V的反偏壓下,光電流對暗電流的對比超過一萬倍,並且在10V的反偏壓下,最大的光響應在波長400nm時是0.27A/W,這個光響應值相當於外部量子效率為41.5%。
    最後,我們已成功地製作出ZnCdSeTe/ZnSSe多重量子井橘光發光二極體,在室溫下15%的Te可以導致電激發光光譜有78nm的紅位移,再者,我們發現藉由調整量子井的數目可以調整發光二極體的顏色,(含ZnCdSe或ZnCdSeTe量子井),並且主宰發光顏色的量子井是位於p-ZnSSe的旁邊,在x-y色度座標圖上,混色發光二極體的顏色跟最接近p-ZnSSe的量子井有很大的關係,另外,若ZnCdSeTe的量子井夠薄的話,其井中能階發光的機率將會增加。

    In this dissertation, a high quality ZnSe buffer layer was grown onto the etched GaAs substrate by molecular beam epitaxy (MBE) while the etched substrate surface having a (4×1) reconstructed pattern during deoxidization. It was found that the orders of periodic fringes of the DCXRD spectrum of a ZnSe buffer layer are over six and that peak splitting between GaAs and ZnSe is 800 arc second which agrees well with the fully strained case. Furthermore, in the critical thickness (hc) determining, an hc value deduced from the x-ray data and from the PL data is about 1700 ? and 800 ?, respectively. It was concluded that the photoluminescence spectra are more sensitive to determine the critical thickness.
    The high quality ZnSeTe/ZnSe multi quantum wells (MQWs) were also grown and investigated. The ZnSe0.99Te0.01 emission line due to Ten-cluster bound exciton is located at 2.67eV, and the full widths at half maximum (FWHM) are 184 meV and 171 meV for 5 QW and 3QW, respectively. Meanwhile, the high quality ZnSSeTe epilayer grown on ZnSe/GaAs layers was achieved by the incorporation of sulfur element into the epitaxial films comparing with the lattice-mismatched ZnSeTe films. It was found that the PL spectra of ZnSSeTe layer are basically not sensitive on the sulfur concentration but sensitive on Te content. It was also found that the ZnSSeTe epitaxial layers not only have excellent high crystal quality but also keep the emission properties of Ten-cluster bound state. Moreover, one-dimensional configuration coordinate diagram of the ZnSSeTe epitaxial layer at 15K have been drawn and compared the lattice of a ZnSSeTe/GaAs system with a ZnSeTe/GaAs system. It has been concluded that the ZnSSeTe epitaxial layer was suitable for thick film application.
    For n-type doping, it was found that the net donor concentrations are logarithmic linearly dependent on the temperature from 120℃ to 160℃. When the doping concentration increases from 3×1018 cm-3 to 1.2×1019 cm-3, the related deep level emission at 2.1 eV increases about two orders. In addition, in such high doping concentration of 1.2×1019 cm-3, the peak of I2 line shift from 2.8 to 2.82 eV and get more broaden. It has been concluded that this emission associated with the continuous states built by heavy doping between the donor and conduction levels. On the other hand, the net acceptor concentration gradually saturated with increasing power from 110 W to 140 W. When the RF power was raised to about 140 W, the doping level, eventually, has been saturated at 8×1017 cm-3 and is independent on RF power. For contact study, thermal reliability of Au/AuBe and Au/AuBe/Cr were investigated. It was found that Zn out-diffusion toward sample surface is the main reason for the increase of ρc for Au/AuBe contact. In other words, Au/AuBe/Cr contact is more thermally reliable. Such a property makes Au/AuBe/Cr attractive in device application.
    In Te application, high quality quaternary ZnSSeTe epitaxial layers were successfully grown by MBE. A ZnSSeTe MSM photodetector was fabricated for the first time. It was found that we could achieve a photo current to dark current contrast higher than five orders of magnitude by applying a 10V reverse bias. It was also found that the maximum photo responsivity is about 0.4 A/W under a 10V reverse bias. In addition, ITO layers were deposited onto n-ZnMgSSe films by DC magnetron sputtering and ITO ZnMgSSe MSM photodetectors were fabricated for the first time. It was found that we could achieve a photocurrent-to-dark current contrast higher than four orders of magnitude by applying a 10 V reverse bias. Moreover, the maximum photoresponsivity at 400 nm is 0.27 A/W under a 5 V reverse bias. Such a value corresponds to an external quantum efficiency of 41.5%.
    Finally, the orange light emitting diodes (LEDs) have been successfully fabricated by using the ZnCdSeTe/ZnSSe MQWs. It was found that a 15% Te can result in a 78 nm EL red-shift at RT. Furthermore, It was found that we could modulate the color of LEDs by varying the well numbers (i.e. ZnCdSe, or ZnCdSeTe), and the dominated emission may be a nearest neighbor-well layer beside the p-ZnSSe layer. Therefore, the x-y values of chromaticity diagram of mixed color LEDs are located in the region strongly depending on what a nearest neighbor-well layer is. In addition, the probability of a ZnCdSeTe well-state emission may increase while the well thickness is thin enough.

    Contents Abstract (in Chinese)…………………………………………………… I Abstract (in English)……………………………………………………. IV Contents ……………………………………………………………… VIII Figures Captions…………………………………………………………. XI Chapter 1 Introduction 1 1.1 The history of ZnSe-based II-VI compound devices…………… 1 1.2 What is a Te-bound exciton in Te-doped ZnSe layers?………… 4 1.3 The aim of this dissertation…………………………………….. 5 References Chapter 2 Theory and model 17 2.1 The theory and model of Te-doped ZnSe ……………………….. 17 2.2 The prospects of Te-doped epilayers…………………………….. 23 References Chapter 3 Equipment, measurement, and analysis 34 3.1 Molecular beam epitaxy (MBE) system ………………………… 34 3.2 Photoluminescence (PL) system ………………………………… 37 3.3 Double crystal x-ray diffraction (DCXRD) system ……………... 41 3.4 Commission Internationale d’Eclairage (CIE) Chromaticity coordinates ……………………………………………………….. 43 References Chapter 4 The heteroepitaxy of ZnSe on GaAs 60 4.1 Interface treatment ………………………………………………. 60 4.2 The growth of a ZnSe buffer layer ………………………………. 66 4.3 Summary ………………………………………………………… 67 References Chapter 5 Crystal and optical properties 80 5.1 Crystal and photoluminescence spectroscopy of ZnSe and ZnSSe .. 80 5.2 Crystal and photoluminescence spectroscopy of Te-doped ZnSe and ZnSSe ……………………………………………………………… 83 5.3 Structure and photoluminescence spectroscopy of ZnCdSeTe/ZnSSe quantum well ………………………………………………………. 91 5.4 Summary …………………………………………………………… 93 References Chapter 6 Doping and contact engineering 130 6.1 Doping properties ………………………………………………….. 130 6.2 Contact engineering ……………………………………………….. 136 6.3 Summary …………………………………………………………... 138 References Chapter 7 Application of Te-bound exciton on metal-semiconductor-metal (MSM) photodetectors 154 7.1 ZnSe MSM photodetector …….………………………………….. 154 7.2 ZnSSeTe MSM photodetector ….………………………………… 157 7.3 ZnMgSSe MSM ultraviolet photodetector …….…………………. 161 7.4 Summary …………………………………………………………. 164 References Chapter 8 Application of Te-bound exciton on mixed-color light emitting diode 189 8.1 Blue-green light emitting diode ………………………………….. 189 8.2 Yellow-orange light emitting diode ………………………………. 192 8.3 Mixed-color light emitting diode ………………………………. 198 8.4 Summary ……………………………………………………….. 201 References Chapter 9 Conclusion and future work 228

    chapter 1

    [1] R. M. Park, M. B. Troffer, and C. M. Rouleau, J. M. DePudyt, and M. A. Haase, “p-ZnSe by nitrogen atom beam doping during molecular beam epitaxial growth”, Appl. Phys. Lett., Vol. 57 Issue 20, pp. 2127-2129, Nov. 1990.
    [2] K. Ohkawa, T. Karasawa, and T. Mitsuyu, “Characteristics of p-ZnSe layers grown by molecular beam epitaxy with radical doping”, Jpn. J. Appl. Phys., Vol. 30, pp. L152, 1990.
    [3] M. A. Haase, J. Qiu, J. M. Depuydt, and H. Cheng, “Blue-green laser diodes”, Appl. Phys. Lett., Vol. 59 Issue 11, pp. 1272-1274, Sep. 1991.
    [4] H. Jeon, J. Ding, W. Patterson, A. V. Nurmikko, W. Xie, D. C. Grillo, M. Kobayashi, and R. L. Gunshor, ”Blue-green injection laser diodes in (Zn,Cd)Se/ZnSe quantum wells”, Appl. Phys. Lett., Vol. 59 Issue 27, pp. 3619-3621, Dec. 1991.
    [5] H. Cheng, J. M. Depudyt, M. A. Haase, and J. Qiu,” LEOS Topical meeting on epitaxial materials and in situ processing for optoelectronics devices, “Newport Beach, CA, 1991.
    [6] A. V. Nurmikko, R. L. Gunshor, N. Otsuka, and M. Kobaysahi, Int. Conf. Solid-state Dev. Mater., Tsukuba, Japan, 1993.
    [7] J. M. Gaines, R. R. Drenten, K. W. Haberern, T. Marshall, P. Mensz, and J. Petruzzello, “Blue-green injection lasers containing pseudomorphic Zn1-xMgxSySe1-y cladding layers and operating up to 394 K”, Appl. Phys. Lett., Vol. 62 Issue 20, pp. 2462-2464, May 1993.
    [8] M. Haase, P. F. Baude, M. S. Hagedorn, J. Qiu, J. M. DePuydt, H. Cheng, S. Guha, G. E. H?fler, and B. J. Wu, ”Low-threshold buried-ridge II-VI laser diodes”, Appl. Phys. Lett., Vol. 63 Issue 17, pp. 2315-2317, Oct. 1993.
    [9] N. Nakayama, S. Itoh, T. Ohata, K. Makono, H. Okuyama, M. Ozawa, A. Ishibashi, M. Ikeda, and Y. Mori, “Room-temperature continuous operation of blue laser diodes”, Electron. Lett., Vol. 29, pp. 1488, 1993.
    [10] N. Nakayama, S. Itoh, T. Okuyama, M. Ozawa, T. Ohata, K. Makono, M. Ozawa, M. Ikeda, A. Ishibashi, and Y. Mori, “Continuous-wave operation of 489.9 nm blue laser diode at room temperature”, Electron. Lett., Vol. 29, pp. 2194, 1993.
    [11] A. Salokatve, H. Jeon, J. Ding, M. Hovinen, A. V. Nurmikko, D. Grillo, Li. He, J. Han, Y. Fan, M. Ringle, R. L. Gunshor, G. Hua, and N. Otsuka, “Continuous-wave room temperature ridge waveguide green-blue diode laser”, Electron. Lett., Vol. 29, pp. 2192, 1993.
    [12] Y. Kawakami, T. Ohnakado, M. Tsuka, S. Toudera, Y. ITO, Sz. Fujita, and Sg. Fujita, “p-type ZnSe grown by molecular beam epitaxy with remote microwave plasma of N2”, J. Vac. Scl. Technol. B, Vol. 11 No. 6 pp. 2057, 1993.
    [13] H. Okuyama, K. Nakano, T. Miyajima, and K. Akimoto, “ Epitaxial growth of ZnMgSSe on GaAs substrate by molecular beam epitaxy”, Jpn. J. Appl. Phys., Vol. 30, pp. L1620, 1991.
    [14] S. Itoh, N. Nakayama, T. Ohata, M. Ozawa, H. Okuyama, K. Nakano, M. Ikeda, A. Ishibashi, and Y. Mori, ”ZnCdSe/ZnSSe/ZnMgSSe SCH laser diode with a GaAs buffer layer”, Jpn. J. Appl. Phys., Vol. 33, pp. L938, 1994.
    [15] S. Taniguchi, T. Hino, S. Itoh, K. Nakano, N. Nakayama, A. Ishibashi and M. Ikeda, “100h II-VI blue-green laser-diode”, Electron. Lett., Vol.32 Issue 6, pp. 552-553, Mar. 1996.
    [16] E. Kato, H. Noguchi, M. Nagai, H. Okuyama, S. Kijima, and A. Ishibashi, “Significant progress in II-VI blue-green laser diode lifetime”, Electron. Lett., Vol. 34 Issue 3, pp. 282-284, Feb. 1998.
    [17] H. Luo, A. Petrou, Handbook of photonics, ed. M. C. Gupa, CRC Press LLC pp.24-48.
    [18] A. Ishibashi, “II-VI blue-green laser diodes”, J. Selected Topics in Quantum Electron., Vol. 1, pp. 741, 1995.
    [19] R. L. Gunshor and A. V. Nurmikko, “II-VI blue-green laser diodes: A frontier of materials research”, MRS Bulletin, July 15 (1995).
    [20] A. V. Nurmikko and R. L. Gunshor, Semiconductor Lasers: Past, Present, and Future, edited by G. P. Agrawal (AIP, 1995), p.208.
    [21] Y. Fan, J. Han, L. He, J. Saraie, R. L. Gunshor, M. Hagerott, H. Jeon, A. V. Nurmikko, G. C. Hua, and N. Otsuka, “Graded band gap ohmic contact to p-ZnSe”, Appl. Phys. Lett., Vol. 61 Issue 26, pp. 3160-3162, Dec. 1992.
    [22] F. Hiei, M. Ikeda, M. Ozawa, T. Miyajima, A. Iskibashi, and K. Akimoto, “Ohmic contacts to p-type ZnSe using ZnTe/ZnSe multiquantum wells, “Electron. Lett., Vol. 29, pp. 878, 1993.
    [23] M. Hovinen, J. Ding, A. V. Nurmikko, G. C. Hua, D. C. Grillo, Li He, J. Han, and R. L. Gunshor, “Degradation of (Zn,Cd)Se quantum well heterostructures for blue/green light emitters under high optical injection”, Appl. Phys. Lett., Vol. 66 Issue 16, pp. 2013-2015, Apr. 1995.
    [24] G. C. Hua, N. Otsuka, D. C. Grillo, Y. Fan, J. Han, M. D. Ringle, R. L. Gunshor, M. Hovinen, and A. V. Nurmikko, “Microstructure study of a degraded pseudomorphic separate confinement heterostructure blue-green laser diode”, Appl. Phys. Lett., Vol. 65 Issue 11, pp. 1331-1333, Sep. 1994.
    [25] L. H. Kuo, L. Salamanca-Riba, B. J. Wu, G.Hofler, J. M. DePuydt, and H. Cheng, ”Dependence of the density and type of stacking faults on the surface treatment of the substrate and growth mode in ZnSxSe1-x/ZnSe buffer layer/GaAs heterostructures”, Appl. Phys. Lett., Vol. 67 Issue 22, pp. 3298-3300, Nov. 1995.
    [26] L. H. Kuo, L. Salamanca-Riba, B. J. Wu, J. M. DePuydt, G.Hofler, and H. Cheng, ”Generation of degradation defects, stacking faults, and misfit dislocations in ZnSe-based films grown on GaAs”, J. Vac. Sci. Technol. B 13 (1995) 1694.
    [27] L. H. Kuo, K. kimura, T. Yasuda, S. Miwa, C. G. Jin, K. Tanaka, and T. Yao, “Effects of interfacial chemistry on the formation of interfacial layers and faulted defects in ZnSe/GaAs”, Appl. Phys. Lett., 68 (1996) 2413.
    [28] M. H. Jeon, L. C. Calhoun, B. P. Ludwig, and R. M. Park, “Impact of surface stoichiometry control during the initial stages of grown on the stacking fault concentration in ZnSe epilayers grown by molecular beam epitaxy”, Appl. Phys. Lett., 69 (1996) 2107.
    [29] H. C. Lee, T. Abe, M. Watanabe, Z. M. Aung, M. Adachi, T. Shirai, H. Yamada, S. Kuroda, H. Kasada, and K. Ando, “Efficient blue-green light-emitting diodes of ZnSSe:Te/ZnMgSSe DH structure grown by molecular-beam epitaxy”, J. Crystal Growth 214/215 (2000) 1096.
    [30] H. Wenisch, M. Fehrer, M. Klude, K. Ohakawa, and D. Hommel, ”Internal photoluminescence in ZnSe homoepitaxy and application in blue-green-orange mixed-color light-emitting diodes”, J. Crystal Growth, 214/215 (2000) 1075.
    [31] K. Katayama, H. Matsubara, F. Nakanishi, T. Nakamura, H. Doi, A. Saegusa, T. Mitsui, T. Matsuoka, M. Irikura, T. Takebe, S. Nishine, and T. Shirakawa, “ZnSe-based white LEDs”, J. Crystal Growth, 214/215 (2000) 1064.
    [32] J. L. Merz, “Isoelectronic oxygen trap in ZnTe”, Phys. Rev. 176(3) (1968) 961.
    [33] S. Permogorov, A. Reznitsky, A. Naumov, H. Stolz, and W. vonder Osten, “Localization of excitons at small Te clusters in diluted ZnSe1-xTex solid solution”, J. Phys.: Condens. Matter 1 (1989) 5125.
    [34] O. Goede, W. Heimbrodt, and R. Mulier, “CdS1-xTex as persistence-type semiconductor mixed crystals”, Phys. Stat. Sol. (b) 105 (1981) 543.
    [35] C. S. Yang, D. Y. Hong, C. Y. Lin, W. C. Chou, C. S. Ro, W. Y. Uen, W. H. Lan, and S. L. Tu, “Optical properties of the ZnSe1-xTex epilayers grown by molecular beam epitaxy”, J. Appl. Phys., 83(5) (1998) 2555.
    [36] M. Kishino, S. Tanaka, K. Senda, Y. Yamada, and T. Taguchi, “Photoluminescence characterization of MBE-grown ZnTeSe epilayers with high concentrations”, J. Crystal Growth 214/215 (2000) 220.
    [37] D. Lee, A. Mysyrowicz, A. V. Nurmikko, and B. J. Fitzpatrick,” Exciton self-traping in ZnSe-ZnTe alloys”, Phys. Rev. Lett. 58(14) (1987) 1475.
    [38] T. Yao, M. Kato, J. J. Davies, and H. Tanino, “Photoluminescence of excitons bound at Te isoelectronic traps in ZnSe”, J. Crystal Growth, 86 (1988) 552.
    [39] S. K. Chang, C. D. Lee, H. L. Park, and C. H. Chung, “Exciton transfer processes in ZnSe1-xTex”, J. Crystal Growth 117 (1992) 793.

    Chapter 2

    [1] J. L. Merz, “Isoelectronic Oxygen Trap in ZnTe”, Phys. Rev., vol. 176, no. 3, pp. 961- 968, Dec. 1968.
    [2] S. Permogorov, A. Reznitsky, A. Naumov, H. Stolz, and W. von der Osten, “Localisation of excitons at small Te clusters in diluted ZnSe1-xTex solid solutions”, J. Phys.:Condens. Matter, vol. 1, pp. 5125-5137, 1989.
    [3] D. Lee, A. Mysyrowicz, A. V. Nurmikko, and B. J. Fitzpatrick, “Exciton self-trapping in ZnSe-ZnTe alloys”, Phys. Rev. Lett., vol. 58, no. 14, pp. 1475-1478, Apr. 1987.
    [4] Y. Shinozuka, and Y. Toyozawa, “Self-trapping in mixed crystal
    —clustering, dimensionality, percolation—“, J. Phys. Soci. Japan, vol. 46, no. 2, pp. 505-514, Feb. 1979.
    [5] H. Nishimura, and T. Yamano, “Free exciton luminescence and its sample dependence in Alkali iodines”, J. Phys. Soc. Japan, vol. 51, no. 9, pp. 2947-2954, Sep. 1982.
    [6] C. Kittel, “Introduction to solid state physics”, pp. 300, 6th, 1991, John Wily & Sons, ISBN 9971-51-048-0.
    [7] S. K. Chang, C. D. Lee, H. L. Park, and C. H. Chung, “Exciton transfer processes in ZnSe1-xTex”, J. Crystal Growth, vol. 117, pp. 793-796, 1992.
    [8] E. Tournie, C. Morhain, M. Leroux, C. Ongaretto, and J. F. Faurie, “Temperature dependence of the photoluminescence of Zn1-xCdxSe/ZnSe strained-layer quantum wells”, Appl. Phys. Lett., vol. 67, no. 1, pp. 103-105, July 1995.

    Chapter 3

    [1] E. H. Parker, The Technology and Physics of Molercular Beam Epitaxy, (1985, p. 15).
    [2] V. Swaminathan and A. T. Macrander, materials Aspects of GaAs and InP Base Structures, (Prentice-Hall, New Jersey, 1991, p. 138).
    [3] Sidney Perkowitz, Optical Characterization of semiconductors: Infrared, Raman, and Photoluminescence Spectroscopy, (ACADEMIC PRESS, New York, 50,1993).
    [4] Dieter K. Schroder, “Semiconductor material and device characterization”, (John Wiley & Sons Inc, 490, 1990)
    [5] M series Spectrometers, SPEX Inc, 1996.
    [6]T. Tao, Y. Okada, S. Matsui, K. Ishida, and I. Fujimoto, “The effect of lattice deformation on optical properties and lattice parameters of ZnSe grown on (100) GaAs”, J. crystal growth, Vol. 81, pp. 518, 1987.
    [7] K. Shahzad, “Excitonic transitions in ZnSe epilayers grown on GaAs”, Phys. Rev. B, Vol. 38, pp. 8309, 1988.
    [8] K. Shahzad, D. J. Olego, and D. A. Cammack, ”Optical transitions in ultra-high-purity Zinc selenide”, Phys. Rev. B, Vol. 39, pp.13016, 1989.
    [9] Y. Kim, S. L. Cooper, M. V. Klein, and B. T. Jonker, “Optical characterization of pure ZnSe films grown on GaAs”, Appl. Phys. Lett., Vol. 62(19), pp. 2387-2389, May 1993.
    [10] K. Shahzad, J. Petruzzello, D. J. Olego, D. A. Cammack, and J. M. Gaines, “Correlation between radiative transitions and structural defects in zinc selenide epitaxial layers”, Appl. Phys. Lett., Vol. 57(23), pp. 2452-2454, Dec. 1990.
    [11] S. Guha, H. Munekata, and L. L. Chang, “Structural quality and the growth mode in epitaxial ZnSe/GaAs(100)”, J. Appl. Phys., Vol. 73(5), pp. 2294-2300, 1993.
    [12] M. Ukita, H. Okuyama, M. Ozawa, A. Ishibashi, K. Akimoto, and Y. Mori, “Refractive indices of ZnMgSSe alloys lattice matched to GaAs”, Appl. Phys. Lett., Vol. 63(15), pp. 2082-2084, Oct. 1995.
    [13] J. Saraie, N. Matsumura, M. Tsubokura, K. Miyagawa, and N. Nakamura, “Y-line emission and lattice relaxation in MBE-ZnSe and –ZnSSe on GaAs”, Jpn. J. Appl. Phys., Vol. 28 No.1, pp. L108 –L111, 1989.
    [14] J. L. Merz, K. Nassau, and J. W. Shiever, Phys. Rev. B, Vol. 8, pp. 1444, 1973.
    [15] S. Iida, “Edge and self-activated emissions in zinc selenide”, J. Phys. Soci. Jpn., Vol. 25(1), pp.177, 1968.
    [16] L. H. Schwartz and J. B. Cohen, “Diffraction from Materials”, 2nd ed., (Springer-Verlag, Berlin, 1987).
    [17] QC2a Differactometer Operation and Reference Manual, Bede Scientific Instruments Ltd, United Kingdom, 1996.

    Chapter 4

    [1] M. A. Haase, J. Qiu, J. M. DePuydt, and H. Cheng, “Blue-green laser diodes”, Appl. Phys. Lett., Vol. 59(11), pp. 1272-1274, Sep. 1991.
    [2] N. Nakayama, S. Itoh, T. Ohata, K. Makono, H. Okuyama, M. Ozawa, A. Ishibashi, M. Ikeda, and Y. Mori, “Room-temperature continuous operation of blue laser diodes”, Electron. Lett. Vol. 29(16), pp. 1488-1489, Aug. 1993.
    [3] N. Nakayama, S. Itoh, T. Okuyama, M. Ozawa, T. Ohata, K. Makono, M. Ozawa, M. Ikeda, A. Ishibashi, and Y. Mori, “Continuous-wave operation of 489.9 nm blue laser diode at room temperature”, Electron. Lett. Vol. 29(25), pp. 2194-2195, Dec. 1993.
    [4] A. Salokatve, H. Jeon, J. Ding, M. Hovinen, A. V. Nurmikko, D. C. Grillo, Li. He, J. Han, Y. Fan, M. Ringle, R. L. Gunshor, G. C. Hua, and N. Otsuka, “Continuous-wave room temperature ridge waveguide green-blue diode laser”, Electron. Lett., Vol. 29(25), pp. 2192-2194, Dec. 1993.
    [5] E. Kato, H. Noguchi, M. Nagai, H. Okuyama, S. Kijima, and A. Ishibashi, “Significant progress in II-VI blue-green laser diode lifetime”, Electron. Lett. Vol. 34(3), pp. 282-284, Feb. 1998.
    [6] M. Hovinen, J. Ding, A. Salokatve, A. V. Nurmikko, G. C. Hua, D. C. Grillo, Li He, J. Han, M. Ringle, and R. L. Gunshor, “On degradation of ZnSe-based blue green diode lasers”, J. Appl. Phys. Vol. 77(8), pp. 4150-4152, Apr. 1995.
    [7] L. H. Kuo, L. Salamanca-Riba, B. J. Wu, G. M. Haugen, J. M. DePuydt, G. Hofler, and H. Cheng, “Generation of degradation defects, stacking faults, and misfit dislocations in ZnSe-based films grown on GaAs”, J. Vac. Sci. Technol. B Vol. 13(4), pp. 1694, 1995.
    [8] G. C. Hua, D. C. Grillo, T. B. Ng, C. C. Chu, J. Han, R. L. Gunshor, and A. V. Nurmikko, “Study on stacking faults and microtwins in wide bandgap II-VI semiconductor heterostructures grown on GaAs”, J. Elect. Mater. Vol. 25(2), pp. 263, 1996.
    [9] L. Salamanca-Riba, and L. H. Kuo, “Observation of [100] and [010] dark line defects in optically degraded ZnSSe-based LEDs by transmission electron microscopy”, J. Elect. Mater. Vol. 25(2), pp. 239, 1996.
    [10] K. Kakano, S. Tomiya, M. Ukita, H. Yoshida, S. Itoh, E. Morita, M. Ikeda, and A. Ishibashi, “Structural study of degraded ZnMgSSe blue light emitters”, J. Elect. Mater. Vol. 25(2), pp. 213, 1996.
    [11] G. D. U’Ren, M. S. Goorsky, G. Meis-Haugen, K. K. Law, T. J. Miller, and K. W. Haberern, “Defect characterization of etch pits in ZnSe based epitaxial layers”, Appl. Phys. Lett., Vol. 69(8), pp.1089-1091, Aug. 1996.
    [12] D. J. Olego, “Effects of ZnSe epitazial growth on the surface properties of GaAs”, Appl. Phys. Lett., Vol. 51(18), pp. 1422-1424, Nov. 1987.
    [13] S. Tomiya, E. Morita, M. Ukita, H. Okuyama, S. Itoh, K. Nakano, and A. Ishibashi, “Structural study of defects induced during current injection to II-VI blue light emitter”, Appl. Phys. Lett., Vol. 66(10), pp. 1208-1210, Mar. 1995.
    [14] V. Bousquet, C. Ongaretto, M. Laugt, M. Behringer, E. Tournie, and J. –P, Faurie, “(001)GaAs substrate preparation for direct ZnSe heteroepitaxy”, J. Appl. Phys., Vol. 81(10), pp. 7012-7015, May 1997.
    [15] R. C. Tu, Y. K. Su, C. F. Li, Y. S. Huang, S. T. Chou, W L. Lan, S. L. Tu, and H. Chang, “Near-band-edge optical properties of MBE-grown ZnSe epilayers on GaAs by modulation spectroscopy”, J. Appl. Phys., Vol. 83(3), pp. 1664-1669, Feb. 1998.
    [16] R. J. Thomas, B. Rockwell, H. R. Chandrasekhar, M. Chandrasekhar, A. K. Ramdas, M. Kobayashi, and R. L. Gunshor, “Temperature dependence of strain in ZnSe(epilayer)/GaAs(epilayer), “ J. Appl. Phys., Vol. 78 (11), pp. 6569-6573, Dec. 1995.

    Chapter 5

    [1] K. Shahzad, J. Petruzzello, D. J. Olego, D. A. Cammack, and J. M. Gaines, “Correlation between radiative transitions and structural defects in zinc selenide epitaxial layers”, Appl. Phys. Lett., Vol. 57(23), pp. 2452-2454, Dec. 1990.
    [2] J. Saraie, N. Matsumura, M. Tsubokura, K. Miyagawa, and N. Nakamura, “Y-line emission and lattice relaxation in MBE-ZnSe and –ZnSSe on GaAs”, Jpn. J. Appl. Phys., Vol. 28 No.1, pp. L108-L111, 1989.
    [3] H. Stolz, W. von der Osyten, S. Permogorov, A. Reznitsky and A. Naumov, J. Phys. Vol. 21, pp. 5139, 1988.
    [4] S. Permogorov, A. Reznitsky, A. Naumov, H. Stolz and W. von der Osyten, “Localisation of excitons at small Te clusters in diluted ZnSe1-xTex solid solutions”, J. Phys. (Condens. Matter), Vol. 1, pp. 5125-5137, 1989.
    [5] T. Yao, M. Kato, J. J. Davies, and H. Tanino, “Photoluminescence of excitons bound at Te isoelectronic traps in ZnSe”, J. Crystal Growth, Vol. 86, pp. 552-557, 1988.
    [6] H. C. Lee, T. Abe, M. Watanabe, Z. M. Aung, M. Adachi, T. Shirai, H. Yamada, S. Kuroda, H. Kasada, and K. Ando, “Efficient blue-green light-emitting diodes of ZnSSe:Te/ZnMgSSe DH structure grown by molecular-beam epitaxy”, J. Crystal Growth, Vol. 214/215, pp. 1096-1099, 2000.
    [7] C. S. Yang, D. Y. Hong, C. Y. Lin, W. C. Chou, C. S. Ro, W. Y. Uen, W. H. Lan, and S. L. Tu, “Optical properties of the ZnSe1-xTex epilayers grown by molecular beam epitaxy”, J. Appl. Phys., Vol. 83(5), pp. 2555-2559, Mar. 1998.
    [8] M. Kishino, S. Tanaka, K. Senda, Y. Yamada, and T. Taguchi, “Photoluminescence characterization of MBE-grown ZnTexSe1-x epitaxial layers with high Te concentrations”, J. Crystal Growth, Vol. 214/215, pp. 220-224, 2000.
    [9] S. K. Chang, C. D. Lee, H. L. Park, and C. H. Chung, “Exciton transfer processes in ZnSe1-xTex”, J. Crystal Growth, Vol. 117, pp. 793-796, 1992.
    [10] E. Kato, H. Noguchi, M. Nagai, H. Okuyama, S. Kijima, and A. Ishibashi, “Significant progress in II-VI blue-green laser diode lifetime”,
    Electron. Lett., Vol. 34 Issue 3, pp. 282-284, Feb. 1998.
    [11] V. Bousquet, C. Ongaretto, M. Laugt, M. Behringer, E. Tournie, and J. –P. Faurie, ”(001)GaAs substrate preparation for direct ZnSe heteroepitaxy”, J. Appl. Phys., Vol. 81 No. 10, pp. 7012-7016, May 1997.

    Chapter 6

    [1] O. de Melo, L. Hernandez, M. Melendez-Lira, Z. Rivera-Alvarez, I.Hernandez-Calderon, “Influence of Cl doping in the optical and electricalproperties of ZnSe grown by molecular beam epitaxy”, SBMO/IEEE MTT-SIMOC’95 Proceeding, 455.
    [2] M. A. Haase, J. Qiu, J. M. Depuydt, and H. Cheng, “Blue-green laser diodes”, Appl. Phys. Lett., Vol. 59 No. 11, pp. 1272-1274, Sep. 1991.
    [3] K. Katayama, H. Matsubara, F. Nakanishi, T. Nakamura, H. Doi, A. Saegusa, T. Mitsui, T. Matsuoka, M. Irikura, T. Takebe, S. Nishine, T. Shirakawa, “ZnSe-based white LEDs”, J. Crystal Growth, Vol. 214/215, pp. 1064-1070, 2000.
    [4] R. M. Park, M. B. Troffer, and C. M. Rouleau, J. M. Depudyt, and M. A. Haase, “p-ZnSe by nitrogen atom beam doping during molecular beam epitaxial growth”, Appl. Phys. Lett., Vol. 57 No. 20, pp. 2127-2129, Nov. 1990.
    [5] S. ITO, M. Ikeda, and K. Akimoto, “Plasma doping of nitrogen in ZnSe using electron cyclotron resonance”, Jpn. J. Appl. Phys. Part2 Vol. 31 No. 9B, pp. L1316-L1318, Sep. 1992.
    [6] Y. Kawakami, T. Ohnakado, M. Tsuka, S. Toudera, Y. ITO, Sz. Fujita, and Sg. Fujita, “p-type ZnSe grown by molecular beam epitaxy with remote microwave plasma of N2”, J. Vac. Scl. Technol. B Vol. 11 No. 6, pp. 2057-2061, Nov./Dec. 1993.
    [7] M. Moldovan, T. H. Myers, and N. C. Giles, ”Investigation of donor-acceptor pair luminescence from ZnSe:N epilayers”, J. Appl. Phys., Vol. 84 No. 10, pp. 5743-5749, Nov. 1998.
    [8] Z. Zhu, G. D. Brownlie, P. J. Thompson, K. A. Prior, and B. C. Cavenett,“A compensating donor with a binding energy of 57 meV in nitrogen-doped ZnSe”, Appl. Phys. Lett., Vol. 67 No. 25, pp. 3762-3764, Dec. 1995.
    [9] K. Kimura, S. Miwa, C. G. Jin, L. H. Kuo, T. Yasuda, A. Ohtake, K.
    Tanaka, T. Yao, and H. Kobayashi, “Atomic nitrogen doping in p-ZnSe with high activation ratio using a high-power plasma source”, J. Crystal Growth, Vol. 184/185, pp. 411-414, 1998.
    [10] W. Lin, S. P. Guo, M. C. Tamargo, I. Kuskovsky, C. Tian, and G. F. Neumark, “Enhancement of p-type doping of ZnSe using a modified (N+Te)δ-doping technique”, Appl. Phys. Lett., Vol. 76 No. 16, pp. 2205-2207, Apr. 2000.
    [11] Y. Sanaka, H. Okuyama, S. Kijima, E. Kato, H. Noguchi, and A. Ishibashi, ”II-VI laser diode with low operation voltage and long device lifetime”, Electron. Lett., Vol. 34 No. 19, pp. 1891-1892, Sep. 1998.
    [12] S. J. Chang, W. R. Chen, Y. K. Su, R. C. Tu, W. H. Lan, and H. Chang,
    “Ohmic contact to p-ZnSe and p-ZnMgSSe”, Electron. Lett., Vol. 35, No.15, pp.1280-1281, 1999.
    [13] S. J. Chang, W. R. Chen, Y. K. Su, J. F. Chen, W. H. Lan, A. C. H. Lin, and H. Chang, ”Formation of local p+ region in ZnSe by Cu3Ge contact”, Electron. Lett., Vol. 35, No. 25, pp.2231-2232, 1999.
    [14] F. Hiei, M. Ikeda, M. Ozawa, T. Miyajima, A. Iskibashi, and K. Akimoto, “Ohmic contacts to p-type ZnSe using ZnTe/ZnSe multiquantum wells, “Electron. Lett., Vol. 29 No. 10, pp. 878-879, May 1993.
    [15] Y. Fan, J. Han, L. He, J. Saraie, R. L. Gunshor, M. Hagerott, H. Jeon, A. V. Nurmikko, “Graded band gap ohmic contact to p-ZnSe”, Appl. Phys. Lett., Vol. 61 No. 26, pp. 3160-3162, Dec. 1992.
    [16] J. T. Trexler, J. J. Fijol, , L. C. Calhoun, R. M. Park, and P. H. Holloway, ”Formation of ohmic contacts to p-ZnTe”, J. Electron. Mater., Vol. 25(9), pp. 1474-1477, 1996.
    [17] M. Ozawa, F. Hiei, M. Taksu, A. Ishibashi, and K. Akimoto, ”Low resistance ohmic contacts for p-ZnTe”, Appl. Phys. Lett., Vol. 64 No. 9, pp. 1120-1122, Feb. 1994.
    [18] K. Mochizuki, A. Terano, M. Momose, A. Taike, M. Kawata, J. Gotoh, and S. Nakatsuka, “Au/Pt/Ti/Ni ohmic contacts to p-ZnTe”, Electron. Lett., Vol. 30(23), pp. 1984~1985, 1994.
    [19] W. H. Lan, W. J. Lin, Yi-cheng Cheng, K. Tai, C. M. Tasi, P. H. Wu, K. H. Cheng, S. T. Chou, C. M. Yang, Yi-Chang Cheng, and K. F. Huang, “AuBe ohmic contacts to p-type ZnTe”, Electron. Lett., Vol. 34 No. 25 2434-2435, Dec. 1998.

    Chapter 7

    [1] M. A. Haase, J. Qiu, J. M. DePuydt, and H. Cheng, “Blue-green laser diodes”, Appl. Phys. Lett., Vol. 59 No. 11, pp. 1272-1274, Sep. 1991.
    [2] T. Abe, H. Ishikura, N. Fukuda, Z. M. Aung, M. Adachi, H. Kasada, and K. Ando, “Demonstration of blue-ultraviolet avalanche photo-diodes of II-VI wide bandgap compounds grown by MBE”, J. Crystal Growth, Vol. 214/215, pp. 1134-1137, June 2000.
    [3] H. Ishikura, T. Abe, N. Fukuda, H. Kasada, and K. Ando, “Stable avalanche-photodiode operation of ZnSe-based p+-n structure blue-ultraviolet photodetectors”, Appl. Phys. Lett. Vol. 76 No. 8, pp. 1069-1071, Feb. 2000.
    [4] M. Razeghi and A. Rogalski, ”Semiconductor ultraviolet detectors”, J. Appl. Phys., Vol. 79, No. 10, pp. 7433-7473, May 1996.
    [5] E. Monroy, E. Mu?oz, F. J. S?nchez, F. Calle, E. Calleja, B. Beaumout, P. Gibart, J. A. Mu?oz and F. Cuss?, “High-performance GaN p-n junction photodetectors for solar ultraviolet applications”, Semicond. Sci. Technol., Vol. 13, pp. 1042-1046, June 1998.
    [6] E. Monroy, F. Vigue, F. Calle, J. I. Izpura, E. Mu?oz, and J. –P, Faurie, “Time response analysis of ZnSe-based Schottky barrier photodetectors”, Appl. Phys. Lett., Vol. 77 No. 17, pp. 2761-2763, Oct. 2000.
    [7] F. Vigu?, E. Tourni?, and J. P. Fauria, “ZnSe-based Schottky barrier photodetectors”, Elect. Lett., Vol. 36 No. 4, pp. 352-354, Feb. 2000.
    [8] F. Vigu?, P. de Mierry, J. –P, Faurie, E. Monroy, F. Calle, and E. Mu?oz, “High dectiveity ZnSe-based Schottky barrier photodetectors for blue and near-ultraviolet spectral range”, Electron Lett., Vol. 36 No. 9, pp. 826-827, Apr. 2000.
    [9] Q. Chen, J. W. Yang, A. Osinsky, S. Gangopadhyay, B. Lim, M. Z. Anwar, M. Asif Khan, D. Kuksenkov and H. Temkin, “Schottky barrier detectors on GaN for visible-blind ultraviolet detection”, Appl. Phys. Lett., Vol. 70 No. 17, pp. 2277-2279, Apr. 1997.
    [10] A. Osinsky, S. Gangopadhyay, R. Gaska, B. Williams, M. A. Khan, D. Kuksenkov and H. Temkin, “Low noise p-π-n GaN ultraviolet photodetectors”, Appl. Phys. Lett., Vol. 71 No. 16, pp. 2334-2336, Oct. 1997.
    [11] A. Gerhard, J. N?rnberger, K. Sch?ll, V. Hock, C. Schumacher, M. Ehinger, and W. Faschinger, “ZnSe-based MBE-grown photodiodes”, J. Crystal Growth, Vol. 184/185, pp. 1319-1323, Feb. 1998.
    [12] H. Hong, W. A. Anderson, J. Haetty, E. H. Lee, H. C. Chang, M. H. Na, H. Luo, and A. Petrou, “Nitrogen ion implanted ZnSe/GaAs p-i-n photodetectors”, J. Appl. Phys., Vol. 84 No. 4, pp. 2328-2333, Aug. 1998.
    [13] H. Ishikura, N. Fukuda, M. Itoi, K. Yasumoto, T. Abe, H. Kasada, and K. Ando, “ High quantum efficiency blue-ultraviolet ZnSe pin photodiode grown by MBE”, J. Crystal Growth, Vol. 214/215, pp. 1130-1133, June 2000.
    [14] G. Parish, S. Keller, P. Kozodoy, J. P. Ibbetson, H. Marchand, P. T. Fini, S. B. Fleischer, S. P. DenBaars and U. K. Mishra, “ High-performance (Al,Ga)N-based solar-blind ultraviolet p-i-n detectors on laterally epitaxially overgrown GaN”, Appl. Phys. Lett., Vol. 75 No. 2, pp. 247-249, July 1999.
    [15] E. Monroy, M. Hamilton, D. Walker, P. Kung, F. J. S?nchez and M. Razeghi, “High-quality visible-blind AlGaN p-i-n photodiodes”, Appl. Phys. Lett., Vol. 74 No. 8, pp. 1171-1173, Feb. 1999.
    [16] Z. C. Huang, C. R. Wie, I. Na, H. Luo, D. B. Mott and P. K. Shu,” High performance ZnSe photoconductors”, Elect. Lett., Vol. 32 No. 16, pp. 1507-1509, Aug. 1996.
    [17] H. Hong, and W. A. Anderson, “Cryogenic processed metal-semiconductor-metal (MSM) photodetectors on MBE grown ZnSe”, IEEE Trans. Elect. Dev., Vol. 46 No. 6, pp. 1127-1134, June 1999.
    [18] Z. C. Huang, J. C. Chen and D. Wickenden, “Characterization of GaN using thermally stimulated current and photocurrent spectroscopies and its application to UV detectors”, J. Cryst. Growth, Vol. 170, pp. 362-366, Jan. 1997
    [19] Y. K. Su, Y. Z. Chiou, F. S. Juang, S. J. Chang and J. K. Sheu, "GaN and InGaN metal-semiconductor-metal photodetectors with different Schottky contact metals", Jpn. J. Appl. Phys., Vol.40, pp. 2996-2999, Apr. 2001.
    [20] C. H. Chen, S. J. Chang, Y. K. Su, G. C. Chi, J. Y. Chi, C. A. Chang, J. K. Sheu and J. F. Chen, "GaN metal-semiconductor-metal ultraviolet photodetectors with transparent indium-tin-oxide Schottky contacts", IEEE Photon. Technol. Lett., Vol. 13, No. 8, pp. 848-850, Aug. 2001.
    [21] W. Faschinger, M. Ehinger, T. Schallenberg and M. korn, “High- efficiency p-i-n dectors for the visible spectral range based on ZnSTe-ZnTe supperlattices”, Appl. Phys. Lett., Vol. 74, No. 22, pp. 3404-3406, 1999.
    [22] E. Monroy, F. Vigue, F. Calle, J. I. Izpura, E. Monuz and J. -P. Faurie, ”Time response analysis of ZnSe-based Schottky barrier photodetectors”, Appl. Phys. Lett., Vol. 77, No. 17, pp. 2761-2763, 2000.
    [23] A. Gerhard, J. Nurnberger, K. Schull, V. Hock, C. Schumacher, M. Ehinger and W. Faschinger, ”ZnSe-based MBE-grown photodiodes”, J. Crystal Growth, Vol. 184/185, pp. 1319-1323, Feb. 1998.
    [24] H. Hong and W. A. Anderson, “Cryogenic processed metal-semiconductor-metal (MSM) photodetectors on MBE grown ZnSe”, IEEE Trans. Elect. Dev., Vol. 46, No. 6, pp. 1127-1134, June 1999.
    [25] S. J. Chang, W. R. Chen, Y. K. Su, R. C. Tu, W. H. Lan and H. Chang, "Ohmic contact to p-ZnSe and p-ZnMgSSe", Electron. Lett., Vol. 35, pp. 1280-1281, July 1999.
    [26] J. I. Pankove: Mater. Res. Soc. Symp. Proc. Vol. 162, pp. 515, 1990.
    [27] E. Monroy, E. Mu?oz, F. J. S?nchez, F. Calle, E. Calleja, B. Beaumout, P. Gibart, J. A. Mu?oz and F. Cuss?: Semicond. Sci. Technol. Vol. 13, pp. 1042, 1998.
    [28] Z. C. Huang, J. C. Chen and D. Wickenden, “Characterization of GaN using thermally stimulated current and photocurrent spectroscopies and its application to UV detectors”, J. Crystal Growth, Vol. 170, pp. 362~366, 1997.
    [29] Y. K. Su, Y. Z. Chiou, F. S. Juang, S. J. Chang and J. K. Sheu: Jpn. J. Appl. Phys. Vol. 40, pp. 2996, 2001.
    [30] J. H. Kim, H. T. Griem, R. A. Friedman, E. Y. Chan and S. Ray “ High-performance back-illuminated InGaAs/InAlAs MSM photodetector with a record responsitivity of 0.96 A/W” IEEE Photon. Technol. Lett. Vol. 4 Iss 11, pp. 1241~1244, 1992.
    [31] J. W. Seo, G. Caneau and I. Adesida ”Application of indium-tin-oxide with improved transmittance at 1.3 mu m for MSM photodetectors”, IEEE Photon. Technol. Lett., Vol. 4 pp. 1313~1315, 1993.
    [32] D. G. Parker and P. G. Say: Electron. Lett. Vol. 22, pp. 1266, 1988.
    [33] C. H. Chen, S. J. Chang, Y. K. Su, G. C. Chi, J. Y. Chi, C. A. Chang, J. K. Sheu and J. F. Chen, ”GaN metal-semiconductor-metal ultraviolet photodetectors with transparent indium-tin-oxide schottky contacts.” IEEE Photon. Technol. Lett. Vol. 13, pp. 848~850, 2001.
    [34] S. J. Chang, W. R. Chen, Y. K. Su, J. F. Chen, W. H. Lan, C. I. Chiang, W. J. Lin, Y. T. Cherng and C. H. Liu, “Au/AuBr/Cr contact to p-ZnTe”, IEE Electronics Letters, Vol.37, No.5, pp. 321-322, 2001.
    [35] Y. K. Su, W. R. Chen, S. J. Chang, F. S. Juang, W. H. Lan, A. C. H. Lin and H. Chang, ”The Red Shift of ZnSSe Metal-Semiconductor-Metal Light Emitting Diodes with High Injection Currents”, IEEE Transactions on Electron Devices, Vol.47, No.7, pp.1330-1333, 2000.
    [36] W. R. Chen, S. J. Chang, Y. K. Su, W. H. Lan, A. C. H. Lin and H. Chang, ”Reactive Ion etching of ZnSe, ZnSSe, ZnCdSe and ZnMgSSe by H2/Ar and CH4/H2/Ar”, Jpn. J. Appl. Phys., Vol.39, pp.3308-3313, 2000.
    [37] S. J. Chang, W. R. Chen, Y. K. Su, J. F. Chen, W. H. Lan, A. C. H. Lin and H. Chang, ”Formation of local P+ region in ZnSe by Cu3Ge contact”, IEE Electronics Letters, Vol. 35, No. 25, pp.2231-2232, 1999.
    [38] S. M. Sze: Physics of Semiconductor Devices, (JOHNWILEY &SONS CENTRAL BOOK COMPANY, TAIPEI, 1981)2nd , p. 256
    [39] G. N. Aliev, R. M. Datsiev, S. V. Ivanov, P. S. Kop’ev, R. P. Seisyan and S. V. Sorokin ”Optics and magneto-optics of ZnSe heteroepitaxial layers” J. Crystal Growth, Vol. 159, pp. 523~527, 1996.
    [40] H. Hong and W. A. Anderson, “Cryogenic processed metal-semiconductor-metal (MSM) photodetectors on MBE grown ZnSe”, IEEE Trans. Elect. Dev., Vol. 46, No. 6, pp. 1127-1134, June 1999.

    Chapter 8

    [1] H. Wenisch, K. Sch?ll, T. Behr, D. Hommel, G. Landwehr, D. Siche, P. Rudolph, and H. Hartmann, “(Cd,Zn)Se multi-quantum-well LEDs: homoepitraxy on ZnSe substrates and heteroepitaxy on (In,Ga)As/GaAs buffer layers”, J. Crystal Growth, Vol. 159, pp. 26~31, 1996.
    [2] W. Gebhardt, B. Hahn, H. Stanzl, and M. Deufel, “Light emitting diodes from MOVPE-grown p- and n-doped II-VI compounds”, J. Crystal Growth, Vol. 159, pp. 238~243, 1996.
    [3] D. B. Eason, Z. Yu, W. C. Hughes, W. H. Roland, C. Boney, J. W. Cook, Jr., and J. F. Schetzina, “High-brightness blue and green light-emitting diodes”, Appl. Phys. Lett., Vol. 66 No. 2, pp. 115-117, Jan. 1995.
    [4] M. A. Haase, J. Qiu, J. M. Depuydt, and H. Cheng, “Blue-green laser diodes”, Appl. Phys. Lett., Vol. 59 No. 11, pp. 1272-1274, Sep. 1991.
    [5] S. Guha, J. M. DeOuydt, M. A. Haase, J. Qiu, and H.Cheng, “Degradation of II-VI based blue-green light emitters”, Appl. Phys. Lett., Vol. 63 No. 23, pp. 3107-3109, Dec. 1993.
    [6] W. H. Lan, W. J. Lin, Yi.Cheng.Cheng, K. Tai, C. M. Tasi, P. H. Wu, K. H.
    Cheng, S. T. Chou, C. M. Yang, Yi.Chang.Cheng, and K. F. Huang, “AuBe
    Ohmic contacts to p-type ZnTe”, Electron. Lett., Vol. 34 No. 25, pp. 2434-2435, Dec. 1998.
    [7] M. Ozawa, F. Hiei, M. Takasu, A. Ishibashi, K. Akimoto, “Low resistance
    ohmic contacts for p-type ZnTe”, Appl. Phys. Lett., Vol. 64 No. 9, pp.1120-1122, Feb. 1994.
    [8] K. Mochizuki, A. Terano, M. Momose, A. Taike, M. Kawata, J. Gotoh, and S. I. Nakatsuka, “Electrical properties and microstructures of Au/Pt/Ti/Ni ohmic contacts of p-type ZnTe”, Appl. Phys. Lett., Vol. 67 No. 1, pp. 112-114, July 1995.
    [9] Y. Lansari, J. Ren, B. Sneed, K. A. Bowers, J. W. Cook, and J.F.Schetzina, “Improved ohmic contacts for p-type ZnSe and related p-on-n diode structure”, Appl. Phys. Lett., Vol. 61 No. 21, PP. 2554-2558, Nov. 1992.
    [10] K. Hashimoto, Y. Koide, O. Tadanaga T. Oku, N. Teraguchi, Y. Tomomura, Suzuki, and M. Murakami, “Cd and Te-Based Ohmic contact materials to p-type ZnSe”, J. Elect. Mat., Vol. 24(12), pp. 1823, 1996.
    [11] S. Yoshii, T. Yokogawa, and Y. Sasai, “Au-Ag/Ni/Te metal multiplayer contact to p-type ZnSe”, Jpn. J. Appl. Phys. Part2, Vol. 36 No. 4A, pp. L386-L389, Feb. 1997.
    [12] G. Prosch, R. Beyer, M. Behringer, M. Fehrer, H. Burghardt, E. Thomas, D. Hommel, and D.R.T. Zahn,” Electrical transport and trap properties in nitrogen-doped p-type MBE-grown ZnSe layers on GaAs using different contact materials”, J. Crystal Growth, Vol. 184/185, pp. 440-444, 1998.
    [13] S. J. Chang, W. R. Chen, Y. K. Su, R. C. Tu, W. H. Lan, and H. Chang, “Ohmic contact to p-ZnSe and p-ZnMgSSe”, Electron. Lett., Vol. 35, No.15, pp.1280-1281, 1999.
    [14] W. R. Chen, S. J. Chang, Y. K. Su, W. H. Lan, A. C. H. Lin and H. Chang, ”Reactive Ion etching of ZnSe, ZnSSe, ZnCdSe and ZnMgSSe by H2/Ar and CH4/H2/Ar”, Jpn. J. Appl. Phys., Vol.39, pp.3308-3313, 2000.
    [15] R. C. Tu, Y. K. Su, D. Y. Lin, C. F. Li, Y. S. Huang, W. H. Lan, S. L. Tu, S. J. Chang, S. C. Chou, and W. C. Chou, “Contactless electroreflectance study of strained Zn0.79Cd0.21Se/ZnSe double quantum wells”, J. Appl. Phys. Vol. 83(2), pp. 1043-1048, Jan 1998.
    [16] Y. Fujii, I. Suemune, and M. Fujimoto, “Comparison of electrical and optical properties of n-I-I and p-I-n ZnSSe heterostructure diodes”, Jpn. J. Appl. Phys. Vol. 33(1B), pp. 840, 1994.
    [17] E. Kato, H. Noguchi, M. Nagai, H. Okuyama, S. Kijima, and A. Ishibashi, “Significant progress in II-VI blue-green laser diode lifetime”, Electron. Lett. Vol. 34, pp. 282, 1998.
    [18] Nakamura and G. Fasol, “The blue laser diode”, pp. 216-219, Springer, Berlin,(1997).
    [19] X. Guo, J. W. Graff, and E. F. Schubert, “Photon-recycling Semiconductor Light-emitting Diodes”, IEDM Technology Digest, IEDM-99, (1999) 600.
    [20] F. Hide, P. Kozody, S. P. DenBaars, and A. J. Heeger, “White light from InGaN/conjugated polymer hybrid light-emitting diodes”, Appl. Phys. Lett., Vol. 70, pp. 2664-2666, May 1997.
    [21] S. K. Chang, C. D. Lee, H. L. Park, and C. H. Chung, “Exciton transfer processes in ZnSe1-xTex”, J. Crystal Growth, Vol. 117, pp. 793-796, 1992.
    [22] D. Lee, A. Mysyrowicz, A. V. Nurmikko, and B. J. Fitzpatrick, “Exciton self-trapping in ZnSe-ZnTe alloys”, Phys. Rev. Lett., Vol. 58 No. 14,pp. 1475-1478, Apr. 1987.
    [23] T. Yao, M. Kato, J. J. Davies, and H. Tanino, “Photoluminescence of excitons bound at Te isoelectronic traps in ZnSe”, J. Crystal Growth, Vol. 86, pp. 552-557, 1988.
    [24] C. S. Yang, D. Y. Hong, C. Y. Lin, W. C. Chou, C. S. Ro, W. Y. Uen, W. H. Lan, and S. L. Tu, “Optical properties of the ZnSe1-xTex epilayers grown by molecular beam epitaxy”, J. Appl. Phys., Vol. 83(5), pp. 2555-2559, Mar. 1998.
    [25] H. C. Lee, T. Abe, M. Watanabe, Z. M. Aung, M. Adachi, T. Shirai, H. Yamada,S. Kuroda, H. Kasada, and K. Ando, ”Efficient blue-green light-emitting diodes of ZnSSe:Te/ZnMgSSe DH structure grown by molecular-beam epitaxy”, J. Crystal Growth, Vol. 214/215, pp. 1096-1099, 2000.
    [26] S. J. Chang, W. R. Chen, Y. K. Su, R. C. Tu, W. H. Lan, and H. Chang, “Ohmic contact to p-ZnSe and p-ZnMgSSe”, Electron. Lett., Vol. 35, No.15, pp.1280-1281, 1999.
    [27] S. J. Chang, Y. K. Su, W. R. Chen, J. F. Chen, W. H. Lan, W. J. Lin, Y. T. Cherng, C. H. Liu and U. H. Liaw, "ZnSTeSe metal-semiconductor-metal photodetectors", IEEE Photo. Tech. Lett., Vol. 14 No. 2, pp. 188-190, Feb. 2002.
    [28] K. Katayama, H. Matsubara, F. Nakanishi, T. Nakamura, H. Doi, A. Saegusa, T. Mitsui, T. Matsuoka, M. Irikura, T. Takebe, S. Nishine, T. Shirakawa, “ZnSe-based white LEDs”, J. Crystal Growth, Vol. 214/215, pp. 1064-1070, 2000.
    [29] A. Souifi, R. Adhiri, R. Le Dantec, G. Guillot, P. Uusimaa, A. Rinta-Moykky, and M. Pessa, “ZnSe/GaAs band-alignment determination by deep level transient spectroscopy and photocurrent measurements”, J. Appl. Phys., Vol. 85 No. 11, pp. 7759-7763, June 1999.
    [30] M. A. Haase, H. Cheng, J. M. DePuydt, and J. E. Potts, “Characterization of p-type ZnSe”, J. Appl. Phys., Vol. 67 No. 1, pp. 448-452, Jan. 1990.

    下載圖示 校內:2004-05-30公開
    校外:2004-05-30公開
    QR CODE