簡易檢索 / 詳目顯示

研究生: 蘇星華
Su, Sing-Hua
論文名稱: 聚集誘發螢光共聚高分子:合成、奈米纖維製備與感測之應用
Fluorescent Copolymers with Aggregation-Induced Emission: Synthesis, Nanofiber Fabrication and Sensing Applications
指導教授: 吳文中
Wu, Wen-Chung
學位類別: 碩士
Master
系所名稱: 工學院 - 化學工程學系
Department of Chemical Engineering
論文出版年: 2017
畢業學年度: 105
語文別: 中文
論文頁數: 70
中文關鍵詞: 聚集誘導發光螢光感測器靜電紡絲奈米纖維
外文關鍵詞: aggregation-induced emission, fluorescent sensor, electrospinning, nanofiber
相關次數: 點閱:113下載:6
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 靜電紡絲(electrospinning)為製備奈米纖維的新穎技術,其操作簡易且多方適用。靜電紡絲奈米纖維因具有高比表面積(surface-to-volume ratio)而廣泛被應用。本實驗以自由基聚合法合成不同比例之共聚高分子 poly((N-isopropylacrylamide)-co-(N-hydroxymethylacrylamide)-co-(2-(1,2,3,4,5-pentaphenyl-1H-silol-1-yloxy)ethyl methacrylate)) (poly(NIPAAm-co-NMA-co-(PPS-HEMA))),P1、P2及P3,並藉由靜電紡絲技術將其製成奈米纖維做為感測之應用,成功製備出多功能性螢光靜電紡絲奈米纖維。其中PNIPAAm為具有熱敏感性質之鏈段,其親疏水特性受溫度影響而改變。PNMA做為奈米纖維之化學交聯鏈段,經過熱交聯後得以使纖維形態在溶液中維持穩定。螢光分子方面,具有聚集誘導發光(aggregation-induced emission)性質的PPS-HEMA於親和力強的有機溶劑時發出極弱螢光,但在聚集狀態時因分子內轉動被限制而誘發螢光增強。利用場效發射式掃描電子顯微鏡(FE-SEM)觀察纖維交聯前後之形態變化,並將交聯後之纖維應用於感測。感測表現上,靜電紡絲纖維因具有較高的比表面積而比薄膜具有較佳的感測靈敏度。而且靜電紡絲纖維能多次重複感測,進而達到可再利用的目的。

    Electrospinning (ES) is a simple and versatile method for manufacturing continuous nanofibers. ES nanofibers with their large surface-to-volume ratio are widely used for various applications. In this study, novel fluorescent ES nanofibers are successfully prepared from random copolymers of poly(NIPAAm-co-NMA-co-(PPS-HEMA)) through free radical polymerization and followed by electrospinning for optical applications. PNIPAAm segments with thermo-responsive properties exhibit a hydrophilic-hydrophobic change as the temperatures varied. PNMA segments with chemically cross-linking moiety stabilize the morphology of nanofibers in the solution after thermal cross-linking. PPS-HEMA segments with aggregation-induced emission (AIE) phenomenon show much weaker emission in a good organic solvent. Upon aggregate formation, the emission of these AIE dyes is induced to increase by the effect of the restricted intramolecular rotation. The morphology of nanofibers before/after cross-linking were observed by Field Emission Scanning Electron Microscopy (FE-SEM). The high surface-to-volume ratio of ES nanofibers enhanced the sensitivity compared with that of spin-coating film. Furthermore, the optical measurements of ES nanofibers were reusable for several times.

    摘要 I ABSTRACT II 誌謝 VII 目錄 VIII 表目錄 X 圖目錄 XI 第一章、緒論 1 1.1 研究背景與文獻回顧 1 1.1.1 共聚高分子 1 1.1.2 功能性高分子材料 2 1.1.2.1 螢光高分子 2 1.1.2.2 環境應答型高分子 3 1.1.3 螢光原理 7 1.1.3.1 光致冷發光(photoluminescence) 7 1.1.3.2 激發態分子之去激發過程 8 1.1.3.3 影響螢光之變數 10 1.1.4 螢光材料 12 1.1.4.1 Aggregation-induced Emission (AIE) 螢光材料 15 1.1.4.2 AIE螢光材料之應用 19 1.1.5 靜電紡絲技術 24 1.1.5.1 靜電紡絲簡介 24 1.1.5.2 靜電紡絲原理與裝置 24 1.1.5.3 影響靜電紡絲之參數 25 1.2 研究動機與目的 31 第二章、實驗 32 2.1 實驗藥品 32 2.2 實驗方法 33 2.2.1 AIE單體 2-(1,2,3,4,5-pentaphenyl-1H-silol-1-yloxy)ethyl methacrylate (PPS-HEMA)合成 33 2.2.2 Poly(NIPAAm-co-NMA-co-(PPS-HEMA))合成 34 2.2.3 靜電紡絲奈米纖維(Electrospinning of nanofibers)製備 35 2.2.4 旋轉塗佈膜(Spin-coating film)製備 36 2.2.5 吸收與螢光光譜之量測 37 2.2.6 靜電紡絲纖維之可再利用性(Reusability)測試 37 2.3 儀器鑑定 38 2.3.1 Nuclear Magnetic Resonance (NMR) 38 2.3.2 Gel permeation chromatography (GPC) 38 2.3.3 Ultraviolet-visible spectra (UV-vis. spectra) 39 2.3.4 Fluorescence Spectrophotometer(FL) 39 2.3.5 High Resolution Field Emission Scanning Electron Microscope (HR FE-SEM) 39 第三章、結果與討論 40 3.1 單體合成與高分子聚合之鑑定 40 3.1.1 PPS-HEMA monomer鑑定 40 3.1.2 Poly(NIPAAm-co-NMA-co-(PPS-HEMA))共聚高分子鑑定 41 3.2 靜電紡絲奈米纖維之結構鑑定 43 3.3 螢光高分子之光學感測性質探討 48 3.3.1 高分子溶液之感測 48 3.3.2 靜電紡絲纖維之感測 53 3.3.3 高分子薄膜之感測 55 3.3.4 溶液、纖維及薄膜之螢光感測能力探討 58 3.4 靜電紡絲奈米纖維之溫度作用探討 60 3.5靜電紡絲纖維之可再利用性(Reusability)探討 61 3.6溶液及纖維之溶劑特性探討 62 第四章、結論與未來工作 64 參考文獻 66

    1. P. Bahadur, N.V.S., Principles of Polymer Science, 2nd ed. 2005: Alpha Science International Ltd.: Oxford, U.K.
    2. Priya James, H., John, R., Alex, A., and Anoop, K.R., Smart polymers for the controlled delivery of drugs - a concise overview. Acta Pharm Sin B, 2014. 4(2): p. 120-7.
    3. Sugiyama, K., Hirao, A., Hsu, J.-C., Tung, Y.-C., and Chen, W.-C., Living Anionic Polymerization of Styrene Derivativespara-Substituted with π-Conjugated Oligo(fluorene) Moieties. Macromolecules, 2009. 42(12): p. 4053-4062.
    4. Lin, P.-H., Lee, W.-Y., Wu, W.-C., and Chen, W.-C., Synthesis, properties, and electrical memory characteristics of new diblock copolymers of polystyrene-block-poly(styrene-pyrene). Polymer Bulletin, 2011. 69(1): p. 29-47.
    5. Onimura, K., Matsushima, M., Nakamura, M., Tominaga, T., Yamabuki, K., and Oishi, T., Synthesis and fluorescent properties of model compounds for conjugated polymer containing maleimide units at the main chain. Journal of Polymer Science Part A: Polymer Chemistry, 2011. 49(16): p. 3550-3558.
    6. Jiang, H.J., Gao, Z.Q., Deng, X.Y., Chen, R.F., and Huang, W., Two photoluminescent polymers based on fluorene and 2,4,6-triphenyl pyridine: Synthesis and electroluminescence. Journal of Applied Polymer Science, 2012. 124(5): p. 3921-3929.
    7. Huang, W. and W. Wu, A novel polymer chemodosimeter for the detection of mercury ions: Synthesis and fluorescence “turn-on” responses of fluorene-based conjugated polymer with reactive pendent N,N-diethyl-2-(4-phenoxy)-thioacetamide. Journal of Applied Polymer Science, 2012. 124(3): p. 2055-2061.
    8. Burroughes, J.H., Bradley, D. D. C., Brown, A.R., Marks, R.N., Mackay, K., Friend, R.H., Burns, P.L., and Holmes, A.B., Light-emitting diodes based on conjugated polymers. Nature, 1990. 347(6293): p. 539-541.
    9. Grimsdale, A.C., Chan, K.L., Martin, R.E., Jokisz, P.G., and Holmes, A.B., Synthesis of Light-Emitting Conjugated Polymers for Applications in Electroluminescent Devices. Chemical Reviews 2009. 109(3): p. 897-1091.
    10. Akcelrud, L., Electroluminescent polymers. Progress in Polymer Science, 2003. 28(6): p. 875-962.
    11. Kim, D.Y., H.N. Cho, and C.Y. Kim, Blue light emitting polymers. Progress in Polymer Science, 2000. 25(8): p. 1089-1139.
    12. Shimizu, M. and T. Hiyama, Organic fluorophores exhibiting highly efficient photoluminescence in the solid state. Chem Asian J, 2010. 5(7): p. 1516-31.
    13. McGehee, M.D. and A.J. Heeger, Semiconducting (Conjugated) Polymers as Materials for Solid-State Lasers. Advanced Materials, 2000. 12(22): p. 1655-1668.
    14. Kozlov, V.G. and S.R. Forrest, Lasing action in organic semiconductor thin films. Current Opinion in Solid State and Materials Scienc, 1999. 4(2): p. 203-208.
    15. Thomas III, S.W., G.D. Joly, and T.M. Swager, Chemical Sensors Based on Amplifying Fluorescent Conjugated Polymers. Chemical Reviews, 2007. 107(4): p. 1339-1386.
    16. Adhikari, B. and S. Majumdar, Polymers in sensor applications. Progress in Polymer Science, 2004. 29(7): p. 699-766.
    17. Schmaljohann, D., Thermo- and pH-responsive polymers in drug delivery. Adv Drug Deliv Rev, 2006. 58(15): p. 1655-70.
    18. Hrubý, M., S.K. Filippov, and P. Štěpánek, Smart polymers in drug delivery systems on crossroads: Which way deserves following? European Polymer Journal, 2015. 65: p. 82-97.
    19. Rzaev, Z.M.O., S. Dinçer, and E. Pişkin, Functional copolymers of N-isopropylacrylamide for bioengineering applications. Progress in Polymer Science, 2007. 32(5): p. 534-595.
    20. Volfova, P., Chrastova, V., Cernakova, L., Mrenica, J., and Kozankova, J., Properties of polystyrene/poly(butyl acrylate) core/shell polymers modified with N-methylol acrylamide. Macromolecular Symposia 2001. 170(1): p. 283-290.
    21. Kuckling, D., M.E. Harmon, and C.W. Frank, Photo-Cross-Linkable PNIPAAm Copolymers. 1. Synthesis and Characterization of Constrained Temperature-Responsive Hydrogel Layers. Macromolecules, 2002. 35(16): p. 6377-6383.
    22. Chuang, W.-J. and W.-Y. Chiu, Thermo-responsive nanofibers prepared from poly(N-isopropylacrylamide-co-N-methylol acrylamide). Polymer, 2012. 53(14): p. 2829-2838.
    23. Saeed, A., D.M.R. Georget, and A.G. Mayes, Synthesis, characterisation and solution thermal behaviour of a family of poly (N-isopropyl acrylamide-co-N-hydroxymethyl acrylamide) copolymers. Reactive and Functional Polymers, 2010. 70(4): p. 230-237.
    24. Chiu, Y.C., Chen, Y., Kuo, C.C., Tung, S.H., Kakuchi, T., and Chen, W.C., Synthesis, morphology, and sensory applications of multifunctional rod-coil-coil triblock copolymers and their electrospun nanofibers. ACS Appl Mater Interfaces, 2012. 4(7): p. 3387-95.
    25. Valeur, B.a.M.N.B.-S., Introduction. 2012: Molecular Fluorescence.
    26. Valeur, B.a.M.N.B.-S., Characteristics of Fluorescence Emission. 2012: Molecular Fluorescence
    27. Smith, A.M. and S. Nie, Chemical analysis and cellular imaging with quantum dots. The Analyst, 2004. 129(8): p. 672.
    28. Resch-Genger, U., Grabolle, M., Cavaliere-Jaricot, S., Nitschke, R., and Nann, T., Quantum dots versus organic dyes as fluorescent labels. Nat Methods, 2008. 5(9): p. 763-75.
    29. Sapsford, K.E., L. Berti, and I.L. Medintz, Materials for fluorescence resonance energy transfer analysis: beyond traditional donor-acceptor combinations. Angew Chem Int Ed Engl, 2006. 45(28): p. 4562-89.
    30. Wang, H., Zhao, E., Lam, J.W.Y., and Tang, B.Z., AIE luminogens: emission brightened by aggregation. Materials Today, 2015. 18(7): p. 365-377.
    31. An, B.-K., Kwon, S.-K., Jung, S.-D., and Park, S.Y., Enhanced Emission and Its Switching in Fluorescent Organic Nanoparticles. Journal of the American Chemical Society, 2002. 124(48): p. 14410-14415.
    32. Oelkrug, D., Tompert, A., Gierschner, J., Egelhaaf, H.-J., Hanack, M., Hohloch, M., and Steinhuber, E., Tuning of Fluorescence in Films and Nanoparticles of Oligophenylenevinylenes. The Journal of Physical Chemistry B, 1998. 102: p. 1902-1907.
    33. Li, Y., Li, F., Zhang, H., Xie, Z., Xie, W., Li, B., Shen, F., Ye, L., Hanif, M., Ma, D., and Ma, Y., Tight intermolecular packing through supramolecular interactions in crystals of cyano substituted oligo(para-phenylene vinylene): a key factor for aggregation-induced emission. Chem Commun (Camb), 2007(3): p. 231-3.
    34. Mei, J., Hong, Y., Lam, J.W., Qin, A., Tang, Y., and Tang, B.Z., Aggregation-induced emission: the whole is more brilliant than the parts. Adv Mater, 2014. 26(31): p. 5429-79.
    35. Mei, J., Leung, N.L., Kwok, R.T., Lam, J.W., and Tang, B.Z., Aggregation-Induced Emission: Together We Shine, United We Soar! Chem Rev, 2015. 115(21): p. 11718-940.
    36. Chen, J., Law, C.C.W., Lam, J.W.Y., Dong, Y., Lo, S.M.F., Williams, I.D., Zhu, D., and Tang, B.Z., Synthesis, Light Emission, Nanoaggregation, and Restricted Intramolecular Rotation of 1,1-Substituted 2,3,4,5-Tetraphenylsiloles. Chem. Mater., 2003. 15: p. 1535-1546.
    37. Qin, A., Lam, J.W.Y., and Tang, B.Z., Luminogenic polymers with aggregation-induced emission characteristics. Progress in Polymer Science, 2012. 37(1): p. 182-209.
    38. Tang, L., Jin, J.K., Qin, A., Zhang Yuan, W., Mao, Y., Mei, J., Zhi Sun, J., and Zhong Tang, B., A fluorescent thermometer operating in aggregation-induced emission mechanism: probing thermal transitions of PNIPAM in water. Chem Commun (Camb), 2009(33): p. 4974-6.
    39. Yang, C.M., Lai, Y.W., Kuo, S.W., and Hong, J.L., Complexation of fluorescent tetraphenylthiophene-derived ammonium chloride to poly(N-isopropylacrylamide) with sulfonate terminal: aggregation-induced emission, critical micelle concentration, and lower critical solution temperature. Langmuir, 2012. 28(44): p. 15725-35.
    40. Wu, W.-C., Chen, C.-Y., Tian, Y., Jang, S.-H., Hong, Y., Liu, Y., Hu, R., Tang, B.Z., Lee, Y.-T., Chen, C.-T., Chen, W.-C., and Jen, A.K.-Y., Enhancement of Aggregation-Induced Emission in Dye-Encapsulating Polymeric Micelles for Bioimaging. Advanced Functional Materials, 2010. 20(9): p. 1413-1423.
    41. Sun, F., Zhang, G., Zhang, D., Xue, L., and Jiang, H., Aqueous Fluorescence Turn-on Sensor for Zn2+ with a Tetraphenylethylene Compound. ORGANIC LETTERS, 2011. 13(24): p. 6378–6381.
    42. Chen, S., Zhao, Z., Tang, B.Z., and Kwok, H.S., Non-doped white organic light-emitting diodes based on aggregation-induced emission. Journal of Physics D: Applied Physics, 2010. 43(9): p. 095101.
    43. Yuan, W., Gu, P.-Y., Lu, C.-J., Zhang, K.-Q., Xu, Q.-F., and Lu, J.-M., Switchable fluorescent AIE-active nanoporous fibers for cyclic oil adsorption. RSC Advances, 2014. 4(33): p. 17255.
    44. Lin, X., Tang, D., Yu, Z., and Feng, Q., Stimuli-responsive electrospun nanofibers from poly(N-isopropylacrylamide)-co-poly(acrylic acid) copolymer and polyurethane. J. Mater. Chem. B, 2014. 2(6): p. 651-658.
    45. Bubel, K., Zhang, Y., Assem, Y., Agarwal, S., and Greiner, A., Tenside-Free Biodegradable Polymer Nanofiber Nonwovens by “Green Electrospinning”. Macromolecules, 2013. 46(17): p. 7034-7042.
    46. Martwiset, S., Nijpanich, S., Banturngsaksiri, A., Sriring, M., Pandhumas, T., and Youngme, S., Pyrene-Doped Electrospun PMMA-PVC Fibers for Ferric Ion Detection. Applied Polymer Science 2013. 130(5): p. 3205-3211.
    47. Ongun, M.Z., Ertekin, K., Gocmenturk, M., Ergun, Y., and Suslu, A., Copper ion sensing with fluorescent electrospun nanofibers. Spectrochim Acta A Mol Biomol Spectrosc, 2012. 90: p. 177-85.
    48. Li, D. and Y. Xia, Electrospinning of Nanofibers: Reinventing the Wheel? Advanced Materials 2004. 16(14): p. 1151-1170.
    49. Fong, H., I. Chun, and D.H. Reneker, Beaded nanofibers formed during electrospinning. Polymer, 1999. 40(16): p. 4585–4592.
    50. CLOUPEAU, M. and B. PRUNET-FOCH, ELECTROSTATIC SPRAYING OF LIQUIDS IN CONE-JET MODE. Journal of Electrostatics 1989. 22(2): p. 135-159.
    51. Mit-uppatham, C., M. Nithitanakul, and P. Supaphol, Ultrafine Electrospun Polyamide-6 Fibers: Effect of Solution Conditions on Morphology and Average Fiber Diameter. Macromolecular Chemistry and Physics, 2004. 205(17): p. 2327-2338.
    52. Casper, C.L., Stephens, J.S., Tassi, N.G., Chase, D.B., and Rabolt, J.F., Controlling Surface Morphology of Electrospun Polystyrene Fibers: Effect of Humidity and Molecular Weight in the Electrospinning Process. Macromolecules, 2004. 37: p. 573-578.

    下載圖示 校內:2019-02-27公開
    校外:2019-02-27公開
    QR CODE