簡易檢索 / 詳目顯示

研究生: 張祐銘
Chuang, You-ming
論文名稱: 鉬酸鹽類及奈米級鈮酸鍶鋇粉體之合成及光學特性探討
The syntheses and optical investigations of molybdate-based and nano-scaled strontium barium niobate powders
指導教授: 朱聖緣
Chu, Sheng-yuan
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 電機工程學系
Department of Electrical Engineering
論文出版年: 2008
畢業學年度: 96
語文別: 中文
論文頁數: 115
中文關鍵詞: 鈮酸鍶鋇鉬酸鹽
外文關鍵詞: molybdate, SBN
相關次數: 點閱:46下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  •   本研究分為兩個部份,第一部分為利用固態法合成可用紫外光波長(394 nm)及藍光波長(465 nm)激發的鉬酸鹽類紅色螢光粉體,探討不同鈣、鋰、鈉及銪比例的鉬酸鹽類螢光粉之發光特性。
      鉬酸鈣鋰銪(Ca1-2xLixEuxMoO4,0≦x≦0.5)螢光粉體在銪(Eu)添加量為30%(x=0.3)時,有最佳之紅光發光強度(616 nm),C.I.E座標為(0.64, 0.34)。
      考量銪的價格成本,我們以鉬酸鋰銪(LiEu(MoO4)2)及鉬酸鈉銪(NaEu(MoO4)2)為主體,添加鉬酸鋰(Li2MoO4)及鉬酸鈉(Na2MoO4),提出LiEu(MoO4)2‧X Li2MoO4 (X=0、1、2、3、4)結構以及NaEu(MoO4)2‧X Na2MoO4 (X=1、2、3、4)結構,藉由X值的增加,降低銪佔鉬酸主體整體的比例,以減少成本支出,又不至於降低太多的發光強度。我們發現在LiEu(MoO4)2‧X Li2MoO4結構中,當X=2的時候有最佳的發光強度(616 nm),C.I.E座標為(0.64, 0.34);而在NaEu(MoO4)2‧X Na2MoO4結構中,同樣也是X=2的時候有最佳的發光強度(617 nm),C.I.E座標為(0.62, 0.35);隨著X值的增加,紅光發光強度也隨之減弱。之後在LiEu(MoO4)2‧X Li2MoO4結構中又分別添加了釤(Sm)和鑭(La)作為增感劑,以增加紅光發光強度(LiEu1-ySmy(MoO4)2‧X Li2MoO4及LiEu1-yLay(MoO4)2‧X Li2MoO4)。在釤的添加量為2mol%時有最佳之紅光發光強度(616 nm),C.I.E座標為(0.63, 0.33);而在鑭的添加量為4mol%時有最佳之紅光發光強度(616 nm),C.I.E座標為(0.63, 0.33)。
      在第二部分,我們利用有機金屬鹽法來合成奈米級的鈮酸鍶鋇(SrxBa1-xNb2O6,SBN)粉末。更進一步地摻雜鉺離子(Er3+)形成綠光螢光粉末,其主要之綠光發射峰值為538 nm及545 nm。探討不同鉺摻雜量的螢光粉末之發光特性,發覺在鉺離子添加量為5mol%時有最佳之綠光發光強度。

    This research is composed of two parts. First, europium doped molybdate-based red phosphor was synthesized by solid-state reaction. We investigated the effct of doping concentraction on the characterization of luminescence which can be excited by the wavelength of 394 nm and 465nm.
    The experiments show that the maximum emission intensity is obtained by adding 30mol% (x=0.3) europium ions in Ca1-2xLixEuxMoO4 (0≦x≦0.5) phosphor, which has a red light emission at 616 nm, and the C.I.E coordinate is (0.64, 0.34).
    We bring up LiEu(MoO4)2‧X Li2MoO4 (X=0, 1, 2, 3, and 4) and NaEu(MoO4)2‧X Na2MoO4 (X=1, 2, 3, and 4) compositions, with the increase of X to reduce europium ratio accounted for molybdate-based phosphor. We find out that LiEu(MoO4)2‧X Li2MoO4 (X=0, 1, 2, 3, and 4) composition has the best luminescence intensity at 616 nm when X=2, the C.I.E coordinate is (0.64, 0.34). NaEu(MoO4)2‧X Na2MoO4 (X=1, 2, 3, and 4) composition has the best luminescence intensity at 617 nm when X=2, and the C.I.E coordinate is (0.62, 0.35). The more increased of X value, the more weakened of luminescence intensity. Afterward we separately add the samarium (Sm) or lanthanum (La) in LiEu(MoO4)2‧X Li2MoO4 (X=1) composition to enhance the luminescence intensity at 616 nm. the maximum emission intensity is obtained by adding 2mol% samarium ion in LiEu1-ySmy(MoO4)2‧X Li2MoO4, and the C.I.E coordinate is (0.63, 0.33). Similarly, the maximum emission intensity is obtained by adding 4mol% lanthanum ion in LiEu1-yLay(MoO4)2‧X Li2MoO4, and the C.I.E coordinate is (0.63, 0.33).
    Second, we synthesize nanocrystalline powders of strontium barium niobate (SrxBa1-xNb2O6, SBN) by chemical methods. Then we dope erbium ion (Er3+) in SBN to synthesize SBN:Er3+ phosphors which emits green light at 538 nm and 545 nm. We investigated the effct of doping concentraction in SBN with different dopant amount. The experiments show that the maximum emission intensity is obtained by adding 5% Er ions in SBN.

    摘要......................................................I Abstract................................................III 目次......................................................V 表目錄...................................................IX 圖目錄...................................................XI 第一章 緒論..............................................1  1-1 前言...............................................1  1-2 研究動機與目的.....................................2 第二章 理論基礎..........................................4  2-1 螢光粉之介紹.......................................4   2-1-1 螢光體發光原理與過程...........................6    2-1-1-1 螢光體能量之激發與吸收.....................6    2-1-1-2 螢光發射和非輻射轉移.......................9    2-1-1-3 螢光材料之光學躍遷[6].....................13   2-1-2 螢光體性質....................................14    2-1-2-1 主體晶格對光譜之影響......................14    2-1-2-2 螢光效率..................................15    2-1-2-3 發光亮度與濃度效應........................15   2-1-3 發光中心之種類與原理..........................17   2-1-4 螢光材料的種類與應用..........................19   2-1-5 濃度淬滅理論..................................21  2-2 稀土元素..........................................23   2-2-1 稀土元素之電子結構............................23   2-2-2 稀土元素之光學躍遷............................24  2-3 鈮酸鍶鋇的基本性質................................26   2-3-1 SBN的晶體結構.................................26 第三章 實驗參數與研究方法...............................30  3-1 實驗藥品..........................................30  3-2 實驗步驟..........................................31   3-2-1 鉬酸鹽........................................31   3-2-2 鈮酸鍶鋇......................................31  3-3 量測系統及特性分析................................32   3-3-1 量測儀器設備..................................32   3-3-2 特性分析......................................33    3-3-2-1 結構分析..................................33    3-3-2-2 光學性質分析..............................34    3-3-2-3 SEM表面分析...............................41    3-3-2-4 衰減期分析................................41 第四章 結果與討論.......................................43  4-1 鉬酸鹽螢光粉體合成之研究..........................43   4-1-1 固態法合成鉬酸鈣鋰銪螢光粉體..................43    4-1-1-1 鉬酸鈣鋰銪螢光粉體之XRD分析...............43    4-1-1-2 鉬酸鈣鋰銪螢光粉體之光激發光譜分析........45    4-1-1-3 鉬酸鈣鋰銪螢光粉體之Decay time分析........50    4-1-1-4 鉬酸鈣鋰銪螢光粉體之C.I.E座標.............52   4-1-2 固態法合成鉬酸鋰銪及鉬酸鈉銪螢光粉體..........54    4-1-2-1 鉬酸鋰銪及鉬酸鈉銪螢光粉體之XRD分析.......54    4-1-2-2 鉬酸鋰銪及鉬酸鈉銪螢光粉體之光激發光譜分析 ..........................................58    4-1-2-3 鉬酸鋰銪及鉬酸鈉銪螢光粉體之Decay time分析 ..........................................67    4-1-2-4 鉬酸鋰銪及鉬酸鈉銪螢光粉體之C.I.E座標.....71   4-1-3 固態法合成鉬酸鋰銪摻雜釤螢光粉體..............75    4-1-3-1 鉬酸鋰銪摻雜釤螢光粉體之XRD分析...........75    4-1-3-2 鉬酸鋰銪摻雜釤螢光粉體之光激發光譜分析....77    4-1-3-3 鉬酸鋰銪摻雜釤螢光粉體之Decay time分析....81    4-1-3-4 鉬酸鋰銪摻雜釤螢光粉體之C.I.E座標.........83   4-1-4 固態法合成鉬酸鋰銪摻雜鑭螢光粉體..............85    4-1-4-1 鉬酸鋰銪摻雜鑭螢光粉體之XRD分析...........85    4-1-4-2 鉬酸鋰銪摻雜鑭螢光粉體之光激發光譜分析....87    4-1-4-3 鉬酸鋰銪摻雜鑭螢光粉體之Decay time分析....91    4-1-4-4 鉬酸鋰銪摻雜鑭螢光粉體之C.I.E座標.........94   4-1-5 鉬酸鹽紅色螢光粉體與商用紅色螢光粉體之比較....96  4-2 鈮酸鍶鋇摻雜鉺螢光粉體合成之研究..................98   4-2-1 有機金屬鹽法合成奈米級鈮酸鍶鋇摻雜鉺螢光粉體 ..............................................98   4-2-2 固態法合成鈮酸鍶鋇摻雜鉺螢光粉體..............99   4-2-3 有機金屬鹽法與固態法合成鈮酸鍶鋇摻雜鉺螢光粉體之      比較..........................................99 第五章 結論與未來展望..................................108  5-1 結論.............................................108   5-1-1 鉬酸鹽類螢光粉體.............................108   5-1-2 鈮酸鍶鋇摻雜鉺螢光粉體.......................109  5-2 未來展望.........................................111   5-2-1 鉬酸鹽類螢光粉體.............................111   5-2-2 鈮酸鍶鋇摻雜鉺螢光粉體.......................111 參考文獻................................................112

    [1] A. B. Panda, A. Pathak, and P. Pramanik, “Low temperature preparation of nanocrystalline solid solution of strontium-barium-niobate by chemical process,” Materials Letters, 52, 180-186 (2002).
    [2] J. Zhao, Y. Li, B. Wang, and L. Qiang, “Low temperature preparation of strontium barium niobate powders from metal carboxylate gels,” Ceramics International, 30, 613-617 (2004).
    [3] M. M. T. Ho, C. L. Mak and K. H. Wong, “Raman scattering and X-ray diffraction investigations of sol-gel derived SBN powders,” J. Euro. Ceram. Soc., 19, 1115-1118 (1999).
    [4] 蘇勉曾、吳世康, “發光材料”第四卷, 1-39, (2004).
    [5] 楊俊英, “電子產業用螢光材料之調查”, 7, 工研院, (1992).
    [6] 林麗玉, “奈米硫化鋅與硫化鋅鎘螢光體微粒之製備、特性鑑定與發光特性研究”, 國立交通大學應用化學研究所碩士論文, (2000).
    [7] R. A. Swalin, “Thermodynamics of Solids,” John Wiley & Sons, 335 (1972).
    [8] D. Dimova-Malinovska, N. Tzenov, M. Tzolov, L.Vassilev, “Optical and electrical properties of R.F. magnetron sputtered ZnO:Al thin films,” Materials Science and Engineering: B, 52, 59-62 (1998).
    [9] S. R. Morrison, “Selectivity in semiconductor gas sensors,” Sensors and Actuators, 12, 425-440 (1987).
    [10] G. Blasse and B.C Grabmaier, “Luminescent Materials,” Springer Verlag, Berlin Heidelberg, Germany, (1994).
    [11] 劉如熹、紀喨勝, “紫外光發光二極體用螢光粉介紹” 全華科技, (2003).
    [12] R. C. Ropp, “Luminescence and solid state,” Elsevier Science Publishers, B. V., The Netherlands, (1991).
    [13] A. M. Glass, “Investigation of the Electrical Properties of SrxBa1-xNb2O6 with Specical Reference to Pyroelectric Detection,” J. Appl. Phys., 40, 4699-4713 (1969).
    [14] P. B. Jamieson, S. C. Abrahams and J. L. Bernstein, “Ferroelectric Tungsten Bronze- Type Crystal Structure. I. Barium Strontium Niobate Ba0.27Sr0.75Nb2O5.78,” J. Chem. Phys., 48, 5048 (1968).
    [15] N. S. VanDamme, A. E. Sutherland, L. Jones, K. Bridger and S. R. Winzer, “Fabrication of Optically Transparent and Electrooptic Strontium Barium Noibate Ceramics,” J. Am. Ceram. Soc., 74, 1785 (1991).
    [16] W. H. Huang, Z. Xu and D. Viehland, “Structure–property relationships in strontium Barium II. Quenching and annealing effects,” Philos.Mag.A, 71, 219 (1995).
    [17] R.Guo, A.S.Bhalla, G.Burns and F.H.Dacol, “Studies on annealing and quenching of strontium barium niobate (SBN) single crystals: A-site cation ordering-disordering effect,” Ferroelectrics, 93, 397-405 (1989).
    [18] P. Trubelja, E. Ryba and D. K. Smith, “A Study of Positional Disorder in Strontium Barium Noibate,” J. Mater. Sci., 31, 1435-43 (1996).
    [19] J. R. Carruther and M. Grasso, “Phase Equilibria Relations in the Ternary System BaO-SrO-Nb2O5,” J. Electrochem. Soc., 117, 1426 (1970).
    [20] Z. Pan, S. H. Morgan, A. Loper, V. King, B. H. Long and W. E. Collins, Appl. Phy. Lett., 77, 4688-4692 (1995).
    [21] Yunsheng Hu, Weidong Zhuang, Hongqi Ye, Donghui Wang, Shusheng Zhang, Xiaowei Huang, “A novel red phosphor for white light emitting diodes,” J. Alloys and Compounds, 390, 226-229 (2005).
    [22] Jiaguo Wang, Xiping Jing, Chunhua Yan, and Jianhua Lin, “Ca1-2xEuxLixMoO4 : A Novel Red Phosphor for Solid-State Lighting Based on a GaN LED,” J. Electrochem. Soc., 152, G186-G188 (2005).
    [23] Jiaguo Wang, Xiping Jing, Chunhua Yan, Jianhua Lin, Fuhui Liao, “Influence of fluoride on f–f transitions of Eu3+ in LiEuM2O8 (M = Mo, W),” J. Luminescence, 121, 57-61 (2006).
    [24] Zhengliang Wang, Hongbin Liang, Menglian Gong, and Qiang Su, “A Potential Red-Emitting Phosphor for LED Solid-State Lighting,” Electrochem. Solid-State Lett., 8, H33-H35 (2005).
    [25] R. Rossetti, R. Hull, J. M. Gibson, L. E. Brus, “Hybrid electronic properties between the molecular and solid state limits: Lead sulfide and silver halide crystallites,” J. Chem. Phys., 83, 1406 (1985).
    [26] W. D. Knight, K. Clemenger, W. A. deHeer, W. A. Saunders, M. Y. Chou, M. L. Cohen, “Electronic Shell Structure and Abundances of Sodium Clusters,” Phys. Rev. Lett., 52, 2141 (1984).
    [27] L. E. Brus, “Electron–electron and electron-hole interactions in small semiconductor crystallites: The size dependence of the lowest excited electronic state,” J. Chem. Phys., 80, 4403 (1984).
    [28] Y. Arakawa and H. Sakaki, “Multidimensional quantum well laser and temperature dependence of its threshold current,” Appl. Phys. Lett., 40, 939 (1982).
    [29] John H. Davies, “The Physics of Low-dimensional Semiconductors: An Introduction,” Cambridge University press, New York, (1998).
    [30] 胡維娟, “鈮酸鍶鋇摻雜鎳之物性分析暨奈米鈮酸鍶鋇粉體製備”, 國立臺南大學自然科學教育學系碩士論文, (2006).
    [31] 歐錫翰, “鈮酸鍶鋇摻雜鉺與鈮酸鎂鋇摻雜鉺螢光粉末之研製及其特性探討”, 國立臺南大學自然科學教育學系碩士論文, (2006).

    下載圖示 校內:2011-07-23公開
    校外:2011-07-23公開
    QR CODE