簡易檢索 / 詳目顯示

研究生: 李茂順
Li, Mao-Shun
論文名稱: 單級三相高功因交流-直流轉換器之研製
Design and Implementation of a Single-Stage Three-Phase High Power Factor AC-DC Converter
指導教授: 梁從主
Liang, Tsorng-Juu
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 電機工程學系
Department of Electrical Engineering
論文出版年: 2008
畢業學年度: 96
語文別: 中文
論文頁數: 71
中文關鍵詞: 功率因數不連續導通模式三相整流器
外文關鍵詞: three phase rectifier, DCM, Power factor
相關次數: 點閱:80下載:7
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文主要為研製一單級三相高功因交流-直流轉換器,此電路為三相交流-直流降/升壓轉換器及直流-直流降/升壓轉換器之整合電路,前半級電路做為功率因數修正;而後半級電路則為降壓轉換之用。本電路可達到單位功率因數校正之效果,且具架構簡單及控制容易之優點。論文中首先簡介傳統三相功率因數修正電路架構,並分析所提出電路架構特性及動作原理。最後實作一500W單級化電源供應器,輸入線電壓為200 10%Vrms,輸出為直流48V,以驗證系統之特性。

    In this thesis, a single-stage high power factor three-phase AC-DC converter is proposed. The proposed converter is composed of a three phase AC-DC buck/boost converter integrated with a DC-DC buck-boost converter. The front semi-stage circuit is used for power factor correction and the rear semi-stage circuit is used for DC-DC conversion. The proposed converter can achieve unity power factor with a simple control and structure. The operation principles and characteristics of the proposed converter are discussed. Finally, the single-stage power supply of 500W is performed with a line input voltage of 200 Vrms 10% and DC output 48V/500W is performed in the laboratory to verify the feasibility of the proposed converter.

    中文摘要 i 英文摘要 ii 誌謝 iii 目錄 iv 圖目錄 vi 表目錄 viii 第一章 緒論 1 1.1 研究背景與動機 1 1.2 文獻回顧 2 1.3 論文架構簡介 9 第二章 功率因數修正電路簡介 11 2.1 功率因數修正之定義 11 2.2 諧波限制規範 13 2.3 主動式功率因數修正電路 16 2.4 常見功率因數修正電路之簡介 18 2.5 功率因數修正電路控制模式 19 2.5.1 連續導通模式 19 2.5.2 臨界導通模式 24 2.5.3 不連續導通模式 25 2.6 輸入濾波器 29 第三章 三相單級高功因交流/直流轉換器 32 3.1 前言 32 3.2 三相單級高功因交流/直流轉換器電路動作原理 32 3.3 穩態分析 39 3.3.1 電壓增益 41 3.3.2 前半級電路操作在臨界模式下之條件 43 3.3.2 後半級電路操作在臨界模式下之條件 44 3.3.3 輸入電流特性分析 46 3.4 電路元件參數分析 47 第四章 三相單級化轉換器之研製與實驗結果 51 4.1 電路參數設計 52 4.1.1 被動元件參數設計 52 4.1.2 主動元件選取 55 4.1.3 UC3825 介紹 58 4.2 實驗結果與分析討論 61 第五章 結論與未來研究方向 67 5.1 結論 67 5.2 未來研究方向 67 參考文獻 69

    [1] N. Mohan, T. M. Undeland, and W. P. Robbins, Power electronics: converter, application and design, Third Edition, John Wiley & Sons, Inc., 2003.
    [2] 張村叮,「具高功因特性三相輸入直流電源供應系統之實現」,中原大學電機工程學系碩士學位論文,民國九十四年。
    [3] H. M. Suryawanshi, M. R. Ramteke, K. L. Thakre, and V. B. Borghate, “Unity-power-factor operation of three-phase ac–dc soft switched converter based on Boost active clamp topology in modular approach,” IEEE Trans. on Power Electronics, vol. 23, no. 1, pp. 229-236, 2008.
    [4] G. Spiazzi and F. C. Lee, “Implementation of single-phase boost power-factor-correction circuits in three-phase applications,” IEEE Trans. on Power Electronics, vol. 44, no. 3, pp. 365-371, 1997.
    [5] L. Malesani, L. Rossetto, P. Tenti, and P. Tomasin, “AC/DC/AC PWM converter with reduced energy storage in the DC link,” IEEE Trans. on Power Electronics, vol. 31, no. 2, pp. 287-292, 1996.
    [6] J. W. Dixon and B.T. Ooi, “Indirect current control of a unity power factor sinusoidal current boost type three-phase rectifier,” IEEE Trans. on Industrial Electronics, vol. 35, no. 4, pp. 508-515, 1988.
    [7] J. J. Shieh, C. T. Pan, and Z. J. Cuey, “Modeling and design of a reversible three-phase switching mode rectifier,” IEE Proc. Electric Power Application, vol. 144, no. 6, pp. 389-396, 1997.
    [8] J. W. Dixon and B. T. Ooi, “Series and parallel operation of hysteresis current-controlled PWM Rectifiers,” IEEE Trans. on Industrial Electronics, vol. 35, no. 4, pp. 644-651, 1989.
    [9] M. S. Dawande, W. R. Kanetkar, and G. K. Dubey, “Three-phase switch mode rectifier with hysteresis current control,” IEEE Trans. on Power Electronics, vol. 11, no. 3, pp. 466-471, 1996.
    [10] E. Wernekinck, A. Kawamura, and R. Hoft, “A high frequency ac/dc converter with unity power factor and minimum harmonic distortion,” IEEE Trans. on Power Electronics, vol. 6, no. 3, pp. 364-370, 1991.
    [11] R. Wu, S. B. Dewan, and G. R. Slemon, “Analysis of an ac-to-dc voltage source converter using PWM with phase and amplitude control,” IEEE Trans. on Industrial Electronics, vol. 27, no. 2, pp. 355-364, 1991.
    [12] A. R. Prasad, P. D. Ziogas, and S. Manias, “An active power factor correction technique for three-phase diode rectifiers,” IEEE Trans. on Power Electronics, vol. 6, no. 1, pp. 83-92, 1991.
    [13] D. S. L. Simonetti, J. L. F. Vieira, and G. C. D. Sousa, “Modeling of the high-power-factor discontinuous Boost rectifiers,” IEEE Trans. on Industrial Electronics, vol. 46, no. 4, pp. 788-795, 1999.
    [14] Q. Huang and F. C. Lee, “Harmonic reduction in a single-switch, three-phase boost rectifier with high order harmonic injected PWM,” IEEE PESC, pp. 1266-1271, 1996.
    [15] Z. Li and Y. Tang, “Simulated study of three-phase single-switch PFC converter with harmonic injected PWM by matlab” IEEE IPEMC, pp. 1-5, 2006.
    [16] Y. Jang and M. M. Jovanovic, “A new input-voltage feedforward harmonic-injection technique with nonlinear gain control for single-switch, three-phase, DCM boost rectifiers” IEEE Trans. on Power Electronics, vol. 28, no. 1, pp. 268-277, 2000.
    [17] P. Barbosa, F. Canales,J. C. Crebier, and F. C. Lee, “Interleaved three-phase Boost rectifiers operated in the discontinuous conduction mode: analysis, design considerations and experimentation” IEEE Trans. on Power Electronics, vol. 16, no. 5, 1996.
    [18] S. Gataric, D. Boroyevich, and F. C. Lee, “Soft-switched single-switch three-phase rectifier with power factor correction,” IEEE APEC, pp. 738-744, 1994.
    [19] Y. Jang, and R. W. Erickson, “New single-switch three-phase high-power-factor rectifiers using multiresonant zero-current switching, ” IEEE Trans. on Power Electronics, vol. 13, no. 1, pp. 194-201, 1998.
    [20] E. H. Ismail, C. M. Oliveira, and R. W. Erickson, “A low-distortion three-phase multiresonant Boost rectifier with zero-current switching,” IEEE Trans. on Power Electronics, vol. 13, no. 4, pp. 718-726, 1998.
    [21] 鄭培璿,「電力電子分析與模擬」,全華科技書局股份有限公司,2002。
    [22] 鄭振東,「交換式電源手冊」,全華科技書局股份有限公司,2007。
    [23] Electromagnetic Compatibility (EMC) — Part3:Limits section II:Limits for harmonic current emissions (Equipment input current 16A per phase), IEC 1000-3-2, 1st ed., 1995.
    [24] C. Zhou, R. B. Ridley, and F. C. Lee, “Design and analysis of a hysteretic Boost power factor correction circuit,” IEEE PESC, pp. 800-807, 1990.
    [25] C. Zhou and M. M. Jovanovic, “Design trade-offs in continuous current-mode controlled boost power-factor correction circuits,” Seventh International High-Frequency Power Conversion (HFPC) Conf., pp 209-220, 1992.
    [26] Power factor correction handbook, On-Semiconductor, 2007.
    [27] 張占松、蔡宣三,「開關電源的原理與設計(修正版)」,電子工業出版社,2007。
    [28] P. B. Christophe, Switch-mode power supplies: spice simulations and practical designs, McGraw-Hill, Inc., 2008.
    [29] R. W. Erickson and D. Maksimovic, Fundamental of power electronics, Second Edition, Kluwer academic publishers, 2001.
    [30] D. S. L. Simonetti, J. Sebastian, and J. Uceda, “The discontinuous conduction mode Sepic and Cuk power factor preregulators: analysis and design,” IEEE Trans. on Industrial Electronics, vol. 44, no. 5, pp. 630-637, 1997.
    [31] H. Wei and I. Batarseh, “Comparison of basic converter topologies for power factor correction,” IEEE Southeastcon, pp. 348-353, 1998.
    [32] K. H. Liu and Y. L. Lin, “Current waveform distortion in power factor correction circuits employing discontinuous-mode Boost converters,” IEEE PESC, pp. 825-829, 1989.
    [33] V. Vlatkovic, D. Borojevic, and F. C. Lee, “Input filter design for power factor correction circuits,” IEEE Trans. on Power Electronics, vol. 11, no. 1, pp. 199-205, 1996.
    [34] F. S. Hamdad and A. K. S. Bhat, “A novel soft-switching high-frequency transformer isolated three-phase ac-to-dc converter with low harmonic distortion,” IEEE Trans. on Power Electronics, vol. 19, no. 1, pp. 35-45, 2004.
    [35] Y. Panov, J. G. Cho, and F. C. Lee, “Zero-voltage-switching three-phase single-stage power factor correction convertor,” IEE Proc. Electric Power Application, vol. 144, no. 5, pp. 343-348, 1997.
    [36] UC3825 datasheet, Texas instruments, 1997.

    下載圖示 校內:2010-08-28公開
    校外:2012-08-28公開
    QR CODE