| 研究生: |
李茂順 Li, Mao-Shun |
|---|---|
| 論文名稱: |
單級三相高功因交流-直流轉換器之研製 Design and Implementation of a Single-Stage Three-Phase High Power Factor AC-DC Converter |
| 指導教授: |
梁從主
Liang, Tsorng-Juu |
| 學位類別: |
碩士 Master |
| 系所名稱: |
電機資訊學院 - 電機工程學系 Department of Electrical Engineering |
| 論文出版年: | 2008 |
| 畢業學年度: | 96 |
| 語文別: | 中文 |
| 論文頁數: | 71 |
| 中文關鍵詞: | 功率因數 、不連續導通模式 、三相整流器 |
| 外文關鍵詞: | three phase rectifier, DCM, Power factor |
| 相關次數: | 點閱:80 下載:7 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本論文主要為研製一單級三相高功因交流-直流轉換器,此電路為三相交流-直流降/升壓轉換器及直流-直流降/升壓轉換器之整合電路,前半級電路做為功率因數修正;而後半級電路則為降壓轉換之用。本電路可達到單位功率因數校正之效果,且具架構簡單及控制容易之優點。論文中首先簡介傳統三相功率因數修正電路架構,並分析所提出電路架構特性及動作原理。最後實作一500W單級化電源供應器,輸入線電壓為200 10%Vrms,輸出為直流48V,以驗證系統之特性。
In this thesis, a single-stage high power factor three-phase AC-DC converter is proposed. The proposed converter is composed of a three phase AC-DC buck/boost converter integrated with a DC-DC buck-boost converter. The front semi-stage circuit is used for power factor correction and the rear semi-stage circuit is used for DC-DC conversion. The proposed converter can achieve unity power factor with a simple control and structure. The operation principles and characteristics of the proposed converter are discussed. Finally, the single-stage power supply of 500W is performed with a line input voltage of 200 Vrms 10% and DC output 48V/500W is performed in the laboratory to verify the feasibility of the proposed converter.
[1] N. Mohan, T. M. Undeland, and W. P. Robbins, Power electronics: converter, application and design, Third Edition, John Wiley & Sons, Inc., 2003.
[2] 張村叮,「具高功因特性三相輸入直流電源供應系統之實現」,中原大學電機工程學系碩士學位論文,民國九十四年。
[3] H. M. Suryawanshi, M. R. Ramteke, K. L. Thakre, and V. B. Borghate, “Unity-power-factor operation of three-phase ac–dc soft switched converter based on Boost active clamp topology in modular approach,” IEEE Trans. on Power Electronics, vol. 23, no. 1, pp. 229-236, 2008.
[4] G. Spiazzi and F. C. Lee, “Implementation of single-phase boost power-factor-correction circuits in three-phase applications,” IEEE Trans. on Power Electronics, vol. 44, no. 3, pp. 365-371, 1997.
[5] L. Malesani, L. Rossetto, P. Tenti, and P. Tomasin, “AC/DC/AC PWM converter with reduced energy storage in the DC link,” IEEE Trans. on Power Electronics, vol. 31, no. 2, pp. 287-292, 1996.
[6] J. W. Dixon and B.T. Ooi, “Indirect current control of a unity power factor sinusoidal current boost type three-phase rectifier,” IEEE Trans. on Industrial Electronics, vol. 35, no. 4, pp. 508-515, 1988.
[7] J. J. Shieh, C. T. Pan, and Z. J. Cuey, “Modeling and design of a reversible three-phase switching mode rectifier,” IEE Proc. Electric Power Application, vol. 144, no. 6, pp. 389-396, 1997.
[8] J. W. Dixon and B. T. Ooi, “Series and parallel operation of hysteresis current-controlled PWM Rectifiers,” IEEE Trans. on Industrial Electronics, vol. 35, no. 4, pp. 644-651, 1989.
[9] M. S. Dawande, W. R. Kanetkar, and G. K. Dubey, “Three-phase switch mode rectifier with hysteresis current control,” IEEE Trans. on Power Electronics, vol. 11, no. 3, pp. 466-471, 1996.
[10] E. Wernekinck, A. Kawamura, and R. Hoft, “A high frequency ac/dc converter with unity power factor and minimum harmonic distortion,” IEEE Trans. on Power Electronics, vol. 6, no. 3, pp. 364-370, 1991.
[11] R. Wu, S. B. Dewan, and G. R. Slemon, “Analysis of an ac-to-dc voltage source converter using PWM with phase and amplitude control,” IEEE Trans. on Industrial Electronics, vol. 27, no. 2, pp. 355-364, 1991.
[12] A. R. Prasad, P. D. Ziogas, and S. Manias, “An active power factor correction technique for three-phase diode rectifiers,” IEEE Trans. on Power Electronics, vol. 6, no. 1, pp. 83-92, 1991.
[13] D. S. L. Simonetti, J. L. F. Vieira, and G. C. D. Sousa, “Modeling of the high-power-factor discontinuous Boost rectifiers,” IEEE Trans. on Industrial Electronics, vol. 46, no. 4, pp. 788-795, 1999.
[14] Q. Huang and F. C. Lee, “Harmonic reduction in a single-switch, three-phase boost rectifier with high order harmonic injected PWM,” IEEE PESC, pp. 1266-1271, 1996.
[15] Z. Li and Y. Tang, “Simulated study of three-phase single-switch PFC converter with harmonic injected PWM by matlab” IEEE IPEMC, pp. 1-5, 2006.
[16] Y. Jang and M. M. Jovanovic, “A new input-voltage feedforward harmonic-injection technique with nonlinear gain control for single-switch, three-phase, DCM boost rectifiers” IEEE Trans. on Power Electronics, vol. 28, no. 1, pp. 268-277, 2000.
[17] P. Barbosa, F. Canales,J. C. Crebier, and F. C. Lee, “Interleaved three-phase Boost rectifiers operated in the discontinuous conduction mode: analysis, design considerations and experimentation” IEEE Trans. on Power Electronics, vol. 16, no. 5, 1996.
[18] S. Gataric, D. Boroyevich, and F. C. Lee, “Soft-switched single-switch three-phase rectifier with power factor correction,” IEEE APEC, pp. 738-744, 1994.
[19] Y. Jang, and R. W. Erickson, “New single-switch three-phase high-power-factor rectifiers using multiresonant zero-current switching, ” IEEE Trans. on Power Electronics, vol. 13, no. 1, pp. 194-201, 1998.
[20] E. H. Ismail, C. M. Oliveira, and R. W. Erickson, “A low-distortion three-phase multiresonant Boost rectifier with zero-current switching,” IEEE Trans. on Power Electronics, vol. 13, no. 4, pp. 718-726, 1998.
[21] 鄭培璿,「電力電子分析與模擬」,全華科技書局股份有限公司,2002。
[22] 鄭振東,「交換式電源手冊」,全華科技書局股份有限公司,2007。
[23] Electromagnetic Compatibility (EMC) — Part3:Limits section II:Limits for harmonic current emissions (Equipment input current 16A per phase), IEC 1000-3-2, 1st ed., 1995.
[24] C. Zhou, R. B. Ridley, and F. C. Lee, “Design and analysis of a hysteretic Boost power factor correction circuit,” IEEE PESC, pp. 800-807, 1990.
[25] C. Zhou and M. M. Jovanovic, “Design trade-offs in continuous current-mode controlled boost power-factor correction circuits,” Seventh International High-Frequency Power Conversion (HFPC) Conf., pp 209-220, 1992.
[26] Power factor correction handbook, On-Semiconductor, 2007.
[27] 張占松、蔡宣三,「開關電源的原理與設計(修正版)」,電子工業出版社,2007。
[28] P. B. Christophe, Switch-mode power supplies: spice simulations and practical designs, McGraw-Hill, Inc., 2008.
[29] R. W. Erickson and D. Maksimovic, Fundamental of power electronics, Second Edition, Kluwer academic publishers, 2001.
[30] D. S. L. Simonetti, J. Sebastian, and J. Uceda, “The discontinuous conduction mode Sepic and Cuk power factor preregulators: analysis and design,” IEEE Trans. on Industrial Electronics, vol. 44, no. 5, pp. 630-637, 1997.
[31] H. Wei and I. Batarseh, “Comparison of basic converter topologies for power factor correction,” IEEE Southeastcon, pp. 348-353, 1998.
[32] K. H. Liu and Y. L. Lin, “Current waveform distortion in power factor correction circuits employing discontinuous-mode Boost converters,” IEEE PESC, pp. 825-829, 1989.
[33] V. Vlatkovic, D. Borojevic, and F. C. Lee, “Input filter design for power factor correction circuits,” IEEE Trans. on Power Electronics, vol. 11, no. 1, pp. 199-205, 1996.
[34] F. S. Hamdad and A. K. S. Bhat, “A novel soft-switching high-frequency transformer isolated three-phase ac-to-dc converter with low harmonic distortion,” IEEE Trans. on Power Electronics, vol. 19, no. 1, pp. 35-45, 2004.
[35] Y. Panov, J. G. Cho, and F. C. Lee, “Zero-voltage-switching three-phase single-stage power factor correction convertor,” IEE Proc. Electric Power Application, vol. 144, no. 5, pp. 343-348, 1997.
[36] UC3825 datasheet, Texas instruments, 1997.