| 研究生: |
麥綺明 Mai, Chi-Min |
|---|---|
| 論文名稱: |
非接觸式感應充電技術應用於油電混合車充電槳之研究 Study on Contactless Inductive Charging Technique for Charging Paddle of Hybrid Electric Vehicles |
| 指導教授: |
陳建富
Chen, Jiann-Fuh 李嘉猷 Lee, Jia-You |
| 學位類別: |
碩士 Master |
| 系所名稱: |
電機資訊學院 - 電機工程學系 Department of Electrical Engineering |
| 論文出版年: | 2009 |
| 畢業學年度: | 97 |
| 語文別: | 中文 |
| 論文頁數: | 78 |
| 中文關鍵詞: | 油電混合車 、非接觸式感應電能傳輸技術 、充電槽 、充電槳 |
| 外文關鍵詞: | charging receptacle, charging paddle, hybrid electric vehicles, inductive charging technique |
| 相關次數: | 點閱:104 下載:2 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本論文旨在研究非接觸式感應電能傳輸技術,並將其應用於油電混合車之充電系統中,利用多鐵芯的耦合結構組成充電槳及充電槽,藉以增加鐵芯的利用率,適合應用於潮溼或是特殊的環境進行充電。文中首先對不同形狀的鐵芯結構進行模擬與分析,並選用適合的鐵芯組成多鐵芯的耦合結構,非接觸式感應耦合結構為RM型鐵芯所構成。透過初級側及次級側的諧振電路增加系統整體效能,並在初級側使用諧振點追蹤的電路,使初級側在負載的變化下,仍操作在諧振點上。系統的輸入電壓為AC110V,使用12V/7Ah的鉛蓄電池進行充電,在氣隙1mm下最高效率為74%。
This thesis investigates the inductive charging technique for charging paddle of Hybrid Electric Vehicles. Charging paddle and charging receptacle are formed by multi-core coupled structure, so as to improve the core’s utility. It is adapt to charge in humid or particular environment. At first the coupled structure is designed by analyzing the comparison of different cores. Second, the coupled structure is established by constituting the adequate multi-core. The Inductive coupled structure is formed RM core. The system is raised efficiency by adding the compensative circuit, and utilizes the resonant frequency tracing circuit to maintain primary side resonant frequency for the change of load. Finally this system with input AC(110V) is implemented in real circuit charging the 12V/7Ah lead-acid cell, and the power transmission efficiency of contactless inductive structure is 74% under 1mm gap.
[1] 王啟川,2007年能源科技研究發展白皮書,臺北市經濟能源局,pp. 221-254,2007。
[2] R. Laouamer, M. Brunello, and J. P. Ferrieux, “A multi-resonant converter for non-contact charging with electromagnetic coupling,” in Proc. IEEE IECON’97, 1997, vol. 2, pp. 792-797.
[3] C. S. Wang, O. H. Stielau, and G. A. Covic, “Design considerations for a contactless electric vehicle battery charger,” IEEE Trans. Ind. Electron., vol. 52, no. 5, pp. 1308-1314, Oct. 2005.
[4] N. H. Kutkut, D. M. Divan, D. W. Novotny, and R. Marion, “Design considerations and topology selection for a 120kW IGBT converter for EV fast charging,” in Proc. IEEE PESC’95, 1995, vo1. 1, pp. 238-244.
[5] R. Severns, E. Yeow, G. Woody, J. Hall, and J. Hayes, “An ultra-compact transformer for a 100 W to 120 kW inductive coupler for electric vehicle battery charging,” in Proc. APEC’96, 1996, vo1. 1, pp. 32-38.
[6] J. G. Hayes, “Battery charging systems for electric vehicles,” in Proc. IEE EV’98, 1998, pp. 4/1-4/8.
[7] N. R. Cox, “A universal power converter for emergency charging of electric vehicle batteries,” in Proc. APEC’95, 1995, vo1. 2, pp. 965-969.
[8] N. H. Kutkut and K. W. Klontz, “Design considerations for power converters supplying the SAE J-1773 electric vehicle inductive coupler,” in Proc. APEC’97, 1997, vo1. 2, pp. 841-847.
[9] M. Kaneko, “Charging paddle which prevents damage of the surface of the primary core and method of manufacturing the same,” U.S. Patent 6,291,969, 2001.
[10] M. Terazoe, “Electric coupling apparatus for charging device,” U.S. Patent 6,320,352, 2001.
[11] G. R. Woody and S. D. Downer, “Inductive coupler assembly having its primary winding formed in a printed board,” U.S. Patent 5,703,462, 1997.
[12] K. Watanabe, H. Kuki, S. Arisaka, and T. Shmiada, “Magnetic coupling device for charging an electric vehicle,” U.S. Patent 5,907,231, 1999.
[13] G. R. Woody, H. J. Tanzer, and J. T. Hall, “Fixed core inductive charger,” U.S. Patent 5,434,493, 1995.
[14] K. Watanabe, H. Kuki, D. Arisaka, and T. Shimada, “Charging connector for electric vehicle,” U.S. Patent 5,909,100, 1999.
[15] 張宗文,非接觸式感應充電技術應用於小家電裝置之研究,國立成功大學電機系碩士論文,2007。
[16] 李依穎,非接觸式感應饋電技術應用於可動機具之研究,國立成功大學電機系碩士論文,2006。
[17] 羅國原,非接觸式感應充電技術應用於可攜式電子產品之研究,國立成功大學電機系碩士論文,2006。
[18] Y. Jang and M. M. Jovanovic, “A contactless electrical energy transmission system for portable-telephone battery chargers,” IEEE Trans. Ind. Electron., vol. 50, no. 3, pp. 520-527, June 2003.
[19] B. Choi, J. Nho, H. Cha, T. Ahn, and S. Choi, “Design and implementation of low-profile contactless battery charger using planar printed circuit board windings as energy transfer device,” IEEE Trans. Ind. Electron., vol. 51, no. 1, pp. 140-147, Feb. 2004.
[20] 周瑋潔,自走機器人用非接觸式分段激發感應供電軌道之研究,國立成功大學電機系碩士論文,2006。
[21] J. M. Barnard, J. A. Ferreira, and J. D. van Wyk, “Sliding transformers for linear contactless power delivery,” IEEE Trans. Ind. Electron., vol. 44, no. 6, pp. 774-779, Dec. 1997.
[22] J. M. Barnard, J. A. Ferreira, and J. D. van Wyk, “Linear contactless power transmission systems for harsh environments,” in Proc. IEEE AFRICON’96, 1996, vol. 2, pp. 711-714.
[23] J. Lastowiecki and P. Staszewski, “Sliding transformer with long magnetic circuit for contactless electrical energy delivery to mobile receivers,” IEEE Trans. Ind. Electron., vol. 53, no. 6, pp. 1943-1948, Dec. 2006.
[24] 萬泰麟,非接觸式感應充電技術應用於小家電裝置之研究,國立成功大學電機工程學系碩士論文,2007。
[25] M. Takahashi, K. Watanabe, F. Sato, and H. Matsuki, “Signal transmission system for high frequency magnetic telemetry for an artificial heart,” IEEE Trans. Magn., vol. 37, no. 4, pp. 2921-2924, July 2001.
[26] K. Finkenzeller, RFID HANDBOOK. 2nd ed., Wiley, 2003.
[27] N. Mohan, T. M. Undeland, and W. P. Robbins, Power electronics. New York: Wiley, 1995.
[28] N. Xi and C. R. Sullivan, “An improved calculation of proximity-effect loss in high-frequency windings of round conductors,” in Proc. IEEE PESC’03, 2003, vol. 2, pp. 853-860.
[29] J. A. Ferreira, “Improved analytical modeling of conductive losses in magnetic components,” IEEE Trans. Power Electron., vol. 9, no. 1, pp. 127-131, Jan. 1994.
[30] N. Xi and C. R. Sullivan, “Simplified high-accuracy calculation of eddy-current loss in round-wire windings,” in Proc. IEEE PESC’04, 2004, vol. 2, pp. 873-879.
[31] “SAE electric vehicle inductive coupling recommended practice,” SAE, Draft, 1995.
[32] 黃聖欽,具準確電量估測之鉛酸電池快速充電系統,國立中央大學電機系碩士論文,2003。
[33] 孫清華,最新可充電電池技術大全,台北市,全華科技,2003。
[34] Y. Wu, L. Yan, and S. Xu, “A new contactless power delivery system,” in Proc. ICEMS’03, 2003, vol. 1, pp. 253-256.
[35] C. S. Wang, G. A. Covic, and O. H. Stielau, “Investigating an LCL load resonant inverter for inductive power transfer applications,” IEEE Trans. Ind. Electron., vol. 19, no. 4, pp. 995-1002, July 2004.
[36] C. S. Wang, G. A. Covic, and O. H. Stielau, “Load models and their application in the design of loosely couple inductive power transfer systems,” in Proc. ICPST’00, 2000, vol. 2, pp. 1053-1058.
[37] C. S. Wang, G. A. Covic, and O. H. Stielau, “Design considerations for a contactless electric vehicle battery charger,” IEEE Trans. Ind. Electron., vol. 52, no. 5, pp. 1308-1314, Oct. 2005.
[38] C. S. Wang, G. A. Covic, and O. H. Stielau, “Power transfer capability and bifurcation phenomena of loosely coupled inductive power transfer systems,” IEEE Trans. Ind. Electron., vol. 51, no. 1, pp. 148-157, Feb. 2004.