| 研究生: |
范嘉玲 Fan, Chia-Ling |
|---|---|
| 論文名稱: |
應用CAN Bus架構於電池電源模組系統之控制 CAN Bus Based Control for Battery Power Module System |
| 指導教授: |
李嘉猷
Lee, Jia-You |
| 學位類別: |
碩士 Master |
| 系所名稱: |
電機資訊學院 - 電機工程學系 Department of Electrical Engineering |
| 論文出版年: | 2019 |
| 畢業學年度: | 107 |
| 語文別: | 英文 |
| 論文頁數: | 75 |
| 中文關鍵詞: | 電池電源模組 、控制器區域網路(CAN Bus) 、故障隔離控制 |
| 外文關鍵詞: | Battery Power Module, Controller Area Network Bus (CAN Bus), Fault Isolation Control |
| 相關次數: | 點閱:126 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本論文旨在建構應用於控制器區域網路(CAN bus)架構之電池電源模組(Battery Power Module, BPM),並針對故障的BPM,透過故障隔離控制進行切離,使其他模組仍可正常運作。將電池與雙向的直流轉換器組成BPM,利用雙向轉換器控制各個模組,穩定BPM的端電壓。主控端經由CAN bus發送充放電控制信號至BPM,若BPM故障時,隔離開關可以將故障的模組切離,並藉由CAN bus介面通知其他BPM,改變模組端的電壓與電流,讓系統能夠繼續充電或放電。本研究藉由調整脈波之導通率控制雙向轉換器功率開關的切換,以控制其輸出電壓、充電電壓與充電電流,並利用CAN bus作為主控端與各BPM間的通訊介面。最後實際建構出應用於CAN bus架構之電池電源模組系統,以驗證BPM充放電控制與故障隔離控制之可行性。
The purpose of this thesis is to construct the battery power module (BPM) based on the controller area network bus (CAN bus). The faulty BPM is isolated through the fault isolation control, so that other modules can still operate properly. The battery and the bidirectional DC-DC converter composed the BPM. The bidirectional converter is used to control each module to stabilize the terminal voltage of the BPM. Master transmits the charging and discharging control signal to the BPM via the CAN bus. If the BPM faults, the isolation switch can isolate the faulty module and notify other BPMs through the CAN bus interface to change the voltage and current of the module, so that the system can continue to charge or discharge. In this study, the switching of the bidirectional converter power switch is controlled by adjusting the duty cycle of the pulse signal to control the output voltage, charging voltage and charging current. The CAN bus is used as the communication interface between the monitoring terminal and each BPM. Finally, the battery power module system based on the CAN bus is constructed to verify the feasibility of BPM charging/discharging control and fault isolation control.
[1] U. Akram, M. Khalid, and S. Shafiq, “Optimal sizing of a wind/solar/battery hybrid grid-connected microgrid system,” IET Renew. Power Generat., vol. 12, no. 1, pp. 72-80, Jan. 2018.
[2] J. Kabouris and F. D. Kanellos, “Impacts of large-scale wind penetration on designing and operation of electric power systems,” IEEE Trans. Sustain. Energy, vol. 1, no. 2, pp. 107-114, Jul. 2010.
[3] M. Liu, W. Li, C. Wang, R. Billinton, and J. Yu, “Reliability evaluation of a tidal power generation system considering tidal current speeds,” IEEE Trans. Power Syst., vol. 31, no. 4, pp. 3179-3188, Jul. 2016.
[4] N. R. Tummuru, M. K. Mishra, and S. Srinivas, “Dynamic energy management of renewable grid integrated hybrid energy storage system,” IEEE Trans. Ind. Electron., vol. 62, no. 12, pp. 7728-7737, Dec. 2015.
[5] N. M. L. Tan, T. Abe, and H. Akagi, “Design and performance of a bidirectional isolated DC-DC converter for a battery energy storage system,” IEEE Trans. Power Electron., vol. 27, no. 3, pp. 1237-1248, Mar. 2012.
[6] M. Bragard, N. Soltau, S. Thomas, and R. W. D. Doncker, “The balance of renewable sources and user demands in grids: power electronics for modular battery energy storage systems,” IEEE Trans. Power Electron., vol. 25, no. 12, pp. 3049-3056, Dec. 2010.
[7] P. B. L. Neto, O. R. Saavedra, and L. A. D. S. Ribeiro, “A dual-battery storage bank configuration for isolated microgrids based on renewable sources,” IEEE Trans. Sustain. Energy, vol. 9, no. 4, pp. 1618-1626, Oct. 2018.
[8] Y. Yang, Q. Ye, L. J. Tung, M. Greenleaf, and H. Li, “Integrated size and energy management design of battery storage to enhance grid integration of large-scale PV power plants,” IEEE Trans. Ind. Electron., vol. 65, no. 1, pp. 394-402, Jan. 2018.
[9] J. M. Choi, B. J. Byen, Y. J. Lee, D. H. Han, H. S. Kho, and G. H. Choe, “Design of leakage inductance in resonant DC-DC converter for electric vehicle charger,” IEEE Trans. Magn., vol. 48, no. 11, pp. 4417-4420, Nov. 2012.
[10] A. M. A. Haidar and K. M. Muttaqi, “Behavioral characterization of electric vehicle charging loads in a distribution power grid through modeling of battery chargers,” IEEE Trans. Ind. Appl., vol. 52, no. 1, pp. 483-492, Jan. 2016.
[11] H. N. D. Melo, J. P. F. Trovao, P. G. Pereirinha, H. M. Jorge, and C. H. Antunes, “A controllable bidirectional battery charger for electric vehicles with vehicle-to-grid capability,” IEEE Trans. Veh. Technol., vol. 67, no. 1, pp. 114-123, Jan. 2018.
[12] M. Yilmaz and P. T. Krein, “Review of battery charger topologies, charging power levels, and infrastructure for plug-in electric and hybrid vehicles,” IEEE Trans. Power Electron., vol. 28, no. 5, pp. 2151-2169, May 2013.
[13] C. C. Chan and K. T. Chau, “An overview of electric vehicles-challenges and opportunities,” in Proc. IEEE IECON, 1996, pp. 1-6.
[14] A. Affanni, A. Bellini, G. Franceschini, P. Guglielmi, and C. Tassoni, “Battery choice and management for new-generation electric vehicles,” IEEE Trans. Ind. Electron., vol. 52, no. 5, pp. 1343-1349, Oct. 2005.
[15] M. Chen, Z. Zhang, Z. Feng, J. Chen, and Z. Qian, “An improved control strategy for the charge equalization of lithium ion battery,” in Proc. IEEE APEC, 2009, pp. 186-189.
[16] S. West and P. T. Krein, “Equalization of valve-regulated lead-acid batteries: issues and life test results,” in Proc. IEEE Int. Telecommun. Energy Conf., 2000, pp. 439-446.
[17] X. Gong, R. Xiong, and C. C. Mi, “Study of the characteristics of battery packs in electric vehicles with parallel-connected lithium-ion battery cells,” IEEE Trans. Ind. Appl., vol. 51, no. 2, pp. 1872-1879, Mar. 2015.
[18] P. T. Krein and R. S. Balog, “Life extension through charge equalization of lead-acid batteries,” in Proc. IEEE Int. Telecommun. Energy Conf., 2002, pp. 516-523.
[19] C. S. Moo, K. S. Ng, and Y. C. Hsieh, “Parallel operation of battery power modules,” IEEE Trans. Energy Convers., vol. 23, no. 2, pp. 701-707, Jun. 2008.
[20] C. S. Moo, J. Y. Jian, T. H. Wu, L. R. Yu, and C. C. Hua, “Battery power system with arrayed battery power modules,” in Proc. IEEE ICSSE, 2013, pp. 437-441.
[21] C. S. Moo, K. S. Ng, and J. S. Hu, “Operation of battery power modules with series output,” in Proc. IEEE ICIT, 2009, pp. 1-6.
[22] S. D. Arco, L. Piegari, and P. Tricoli, “A modular converter with embedded battery cell balancing for electric vehicles,” in Proc. IEEE Elect. Syst. Aircraft Railway Ship Propulsion, 2012, pp. 1-6.
[23] 鍾義元,電池模組充/放電之電壓箝位平衡,國立成功大學電機工程學系碩士論文,2013年。
[24] 林琨翔,升壓式電池電源模組並聯運轉,國立中山大學電機工程學系碩士論文,2013年。
[25] J. Y. Jian, C. S. Chang, C. S. Moo, and H. C. Yen, “Charging scenario of serial battery power modules with buck-boost converters,” in Proc. IEEE IPEC, 2014, pp. 3928-3932.
[26] D. Ye, T. H. Wu, C. F. Chen, and C. S. Moo, “Battery isolation mechanism for buck-boost battery power modules in series,” in Proc. IEEE EFEA, 2016, pp. 1-5.
[27] L. R. Yu, D. Ye, and C. S. Moo, “Discharging scenario of serial buck-boost battery power modules with fault tolerance,” in Proc. IEEE IECON, 2015, pp. 1622-1626.
[28] M. Zheng, B. Qi, and H. Wu, “A Li-ion battery management system based on CAN-bus for electric vehicle,” in Proc. IEEE ICIEA, 2008, pp. 1180-1184.
[29] A. Kuperman, U. Levy, J. Goren, A. Zafransky, and A. Savernin, “Battery charger for electric vehicle traction battery switch station,” IEEE Trans. Ind. Electron., vol. 60, no. 12, pp. 5391-5399, Dec. 2013.
[30] Y. Hu and H. Liu, “Design of management system for LiFePO4 power batteries group,” in Proc. IEEE ICECE, 2010, pp. 5110-5113.
[31] 王志方,磷酸鋰鐵電池之產業概況,IBT,2008年11月。
[32] 許家興,電動車電池類型與電池基礎介紹,車輛研測資訊,2009年10月。
[33] N. Kularatna, “Rechargeable batteries and their management,” IEEE Instrum. Meas. Mag., vol. 14, no. 2, pp. 20-33, Apr. 2011.
[34] A. A. H. Hussein and I. Batarseh, “A review of charging algorithms for nickel and lithium battery chargers,” IEEE Trans. Veh. Technol., vol. 60, no. 3, pp. 830-838, Mar. 2011.
[35] Y. S. Chu, R. Y. Chen, T. J. Liang, S. K. Changchien, and J. F. Chen, “Positive/negative pulse battery charger with energy feedback and power factor correction,” in Proc. IEEE APEC, 2005, pp. 986-990.
[36] 陳建任,具多鐵芯感應結構非接觸式油電混合車充電槳之研究,國立成功大學電機工程學系碩士論文,2009年。
[37] J. M. A. Boadu, A. G. Elie, and E. S. Sinencio, “Search for optimal pulse charging parameters for Li-ion polymer batteries using taguchi orthogonal arrays,” IEEE Trans. Ind. Electron., vol. 65, no. 11, pp. 8982-8992, Nov. 2018.
[38] F. Savoye, P. Venet, M. Millet, and J. Groot, “Impact of periodic current pulses on Li-ion battery performance,” IEEE Trans. Ind. Electron., vol. 59, no. 9, pp. 3481-3488, Sep. 2012.
[39] L. R. Chen, N. Y. Chu, C. S. Wang, and R. H. Liang, “Design of a Reflex-based bidirectional converter with the energy recovery function,” IEEE Trans. Ind. Electron., vol. 55, no. 8, pp. 3022-3029, Aug. 2008.
[40] C. M. Lai, J. Teh, Y. H. Cheng, and Y. H. Li, “A Reflex-charging based bidirectional DC charger for light electric vehicle and DC-microgrids,” in Proc. IEEE TENCON, 2017, pp. 280-284.
[41] C. H. Kim, M. Y. Kim, H. S. Park, and G. W. Moon, “A modularized two-stage charge equalizer with cell selection switches for series-connected lithium-ion battery string in an HEV,” IEEE Trans. Power Electron., vol. 27, no. 8, pp. 3764-3774, Aug. 2012.
[42] C. H. Hou, C. T. Yen, T. H. Wu, and C. S. Moo, “A battery power bank of serial battery power modules with buck-boost converters,” in Proc. IEEE Int. Conf. Power Electron. Drive Syst., 2013, pp. 211-216.
[43] S. J. Chiang, C. M. Liaw, W. C. Chang, and W. Y. Chang, “Multi-module parallel small battery energy storage system,” IEEE Trans. Energy Convers., vol. 11, no. 1, pp. 146-154, Mar. 1996.
[44] 詹家福,陣列式升壓型電池電源模組之架構與分析,國立中山大學電機工程學系碩士論文,2010年。
[45] K. W. Tindell, H. Hansson, and A. J. Wellings, “Analysing real-time communications: controller area network (CAN),” in Proc. IEEE Real-Time Syst. Symp., 1994, pp. 259-263.
[46] F. L. Lian, J. R. Moyne, and D. M. Tilbury, “Performance evaluation of control networks: ethernet, controlnet, and devicenet,” IEEE Control Syst. Mag., vol. 21, no. 1, pp. 66-83, Feb. 2001.
[47] A. Ashiebi, A. Khalil, and J. Wang, “Networked control of parallel DC/DC converters over CAN bus,” in Proc. IEEE POWERCON, 2016, pp. 1-6.
[48] D. G. Huang, X. Zhang, and D. W. Feng, “Research on the real-time performance of power lithium battery assembly line based on CAN bus,” in Proc. IEEE AISM, 2015, pp. 1-7.
[49] X. Chen, W. Jin, H. Zhang, and W. Lv, “Estimation of CAN bus reliability based on real-time performance,” in Proc. IEEE WCICA, 2012, pp. 999-1004.
[50] Robert Bosch GmbH, “CAN specification,” Version 2.0, 1991.
[51] MCP2551 Data Sheet, Microchip Technology Inc., 2002.
[52] SRD Series Relay Data Sheet, Songle Relay, 2002.
[53] TLP250 Data Sheet, Toshiba, 2004.
[54] Current Transducer HX 03..50-P Data Sheet, LEM, 2014.
[55] dsPIC30F4011 Data Sheet, Microchip Technology Inc., 2005.
[56] IXFH26N50Q Data Sheet, IXYS, 2001.
[57] TL084 Data Sheet, STMicroelectronics, 1999.
[58] Multi-Range DC Power Supply User Manual, Good Will Instrument Co., Ltd., 2006.
[59] Model DMM6500 6½-Digit Bench/System Multimeter User Manual, Keithley Instruments, 2018.