簡易檢索 / 詳目顯示

研究生: 吳錫昆
Wu, Shyi-Kuen
論文名稱: 攝影動作分析系統對頸椎局部角度測量之效度及頸椎局部動作之探討
The Validation of Video-Based Motion Analysis System on Measuring Intervertebral Angulations and the Investigation on Intervertebral Motions during Cervical Flexion and Extension
指導教授: 蘇芳慶
Su, Fong-Chin
學位類別: 博士
Doctor
系所名稱: 工學院 - 醫學工程研究所
Institute of Biomedical Engineering
論文出版年: 2007
畢業學年度: 95
語文別: 英文
論文頁數: 84
中文關鍵詞: 動作分析頸椎局部動作椎體間移動螢光透視攝影
外文關鍵詞: Cervical spine, Motion analysis, Segmental movement, Videofluoroscopy, Intervertebral translation
相關次數: 點閱:100下載:4
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 雖然攝影動作分析系統相對於放射線X光具有動態和沒有輻射的優勢,但是過去的文獻中並未有運用此系統分析測量頸椎局部動作之研究。 本研究之目的是要建立一個頸部表面標識的定位方法,以區別上、下頸椎之局部動作和量測姿態; 另外並運用螢光透視攝影,檢測利用頸部表面標識來測量頸椎局部動作之可行性。 十六位健康成年人(8位男性和8位女性)參與本研究。 十個表面標識被使用來估計與對應頸椎解剖標記於動作範圍之差異。 在頸部活動的同時,由表面標識和解剖標記所構成之對應的頸椎角度,其組間相關係數介於0.844和0.975之間而平均絕對誤差值為2.97度。 本研究之結果顯示由表面標識和解剖標記所構成之對應的頸椎角度於頸部彎曲伸展時有很高的一致性。 在正中姿勢下量得之上、下頸椎角度分別為18.59 ± 4.33 度以及 23.98 ± 6.15度。 此外量測人員本身數位化頸椎角度過程的可信度為組間相關係數0.850-0.999;平均絕對誤差值為0.58–2.42度。 量測人員之間數位化頸椎角度過程的可信度為組間相關係數0.759-0.988;平均絕對誤差值為0.59–2.66度。 本研究之結果支持透過使用此頸部表面標識的定位方式,可以提早偵測出上、下頸椎姿勢形態或者運動時椎間角度變化之可行性。 另一方面,對於頸椎彎曲、伸展動作時產生之椎體間移動研究的缺乏,造成無法更為深入地瞭解頸椎生物力學及治療頸部機能障礙。 本研究第四章之目的在於運用螢光透視攝影技術,分析頸椎彎曲、伸展動作時產生之連續椎體間角度變化及移動。 四十八位健康成年人的頸椎彎曲與伸展時之連續動作影像以精確的影像模式來分析。 本章之研究結果顯示頸椎彎曲、伸展動作時頸椎C2/3到C6/7的角度分別為13.08,17.54,22.37,19.16以及16.58度。 C4/5,C5/6以及C6/7節於頸椎彎曲動作時有明顯較大的角度貢獻; 而C4/5節於頸椎伸展動作時有明顯較大的角度貢獻(P<0.001)。 頸椎彎曲動作時椎體間移動之程度依序分別為C2/3節(0.7公釐),C6/7節(0.9公釐),C3/4節(1.0公釐), C5/6節(1.1公釐)以及C4/5節(1.2公釐)。 而C3/4,C4/5和C5/6節椎體間往後移動之程度明顯大於往前移動之程度(P = 0.041,P = 0.045,P = 0.006)。 C6/7節呈現出起伏及最少之椎體間往後移動(0.4公釐)顯示受測者間頸椎伸展動作時的變異性。 將椎體間移動程度以個別椎體寬度標準化後,其C2/3到C6/7的移動百分比分別為9.3%,14.0%,16.7%,15.3%以及8.7%。 此結果是為臨床上椎體間移動的正常範圍。 藉此,運用已驗證之放射線影像模式,頸椎體間於彎曲與伸展時之椎體間移動將首次呈現其質與量。 此分析方式可能可以應用於診斷不正常頸椎間移動之病理問題,例如活動度過低或過高;以及偵測治療頸部機能障礙之效果。

    Despite offering dynamic assessment without radiation, the video-based motion analysis system has not yet been applied to measure the cervical segmental movements. The purposes of this thesis were to develop a method of positioning the surface markers to differentiate the movements and posture between upper and lower cervical spine, and to examine the reliability of measuring cervical motion with surface markers with the aid of videofluoroscopy. Sixteen healthy adult subjects (eight males and eight females) participated in this study. Ten surface markers were used to estimate the discrepancies in cervical vertebral angles compared with corresponding anatomic landmarks throughout the ROM. The average intraclass correlation coefficients (ICCs) of the paired vertebral angles between surface markers and anatomic landmarks ranged from 0.844 to 0.975 and the mean absolute difference (MAD) averaged 2.97°. Our results indicate high consistency between surface markers and anatomic landmarks throughout the cervical movements. The mean upper (C0–C2) and lower (C2–C7) cervical joint angles in the neutral position were 18.59° ± 4.33° and 23.98° ± 6.15°, respectively. Furthermore, the reliability of the digitizing procedure within raters (ICC = 0.850–0.999; MAD = 0.58–2.42°) and between raters (ICC = 0.759–0.988; MAD = 0.59–2.66°) suggests that our positioning of the surface markers is a feasible method for investigating static neck posture or dynamic motion between upper and lower cervical spine. On the other hand, the insufficient exploration of intervertebral translation during flexion and extension prevents the further understanding the cervical biomechanics and treating the cervical related dysfunction. The objective of chapter four was to quantitatively measure the continuous intervertebral angulation and translation of healthy cervical spine during flexion and extension by videofluoroscopic technique. The image sequences were analyzed for 48 healthy adult subjects by a precise image protocol during cervical flexion and extension. The results of the total angular motion were 13.08°, 17.54°, 22.37°, 19.16°, and 16.58° for C2/3 to C6/7 levels, respectively. The C4/5, C5/6, and C6/7 segmental levels significantly contributed more angular motion during the cervical flexion; whereas the C4/5 segment contributed the greatest motion during the cervical extension (P<0.001). Our results showed that during cervical flexion the smallest anterior translations were 0.7mm at C2/3 level, followed by 0.9mm at C6/7, 1.0mm at C3/4, 1.1mm at C5/6, and 1.2mm at C4/5, respectively. The significantly greater translations were measured in the posterior direction than in the anterior one at C3/4 (P = 0.041), C4/5 (P = 0.045), and C5/6 levels (P = 0.006). The relatively fluctuant translation fashion and the least posterior translation (0.4mm) at C6/7 level implied a larger variation in cervical extension pattern among subjects. Normalization with respect to the widths of individual vertebrae showed the total translation percentages relative to the adjacent vertebrae were 9.3%, 14.0%, 16.7%, 15.3%, and 8.7% for C2/3 to C6/7 levels, respectively, and appeared to be within the clinical-accepted ranges of translation in cervical spine. The intervertebral translations of cervical spine during flexion and extension movements were first described in quality and quantity based on the validated radiographic protocol. This analysis of the continuous intervertebral translations may be further employed to diagnose translation abnormalities like hypomobility or hypermobility and to monitor the treatment effect on cervical spines.

    中文摘要 ---------------------------------------------------------------------------------------------- I Abstract ---------------------------------------------------------------------------------------------- III Acknowledgements -------------------------------------------------------------------------------- VI List of Tables --------------------------------------------------------------------------------------- XI List of Figures ------------------------------------------------------------------------------------ XIII Chapter 1 Background and Significance ------------------------------------------------------- 1 1.1 Research Background ------------------------------------------------------------------------- 1 1.2 Significance ------------------------------------------------------------------------------------ 2 1.3 Specific Aims ---------------------------------------------------------------------------------- 3 1.4 Hypothesis ------------------------------------------------------------------------------------- 4 Chapter 2 Literature Review --------------------------------------------------------------------- 6 2.1 Historical Measurements on Cervical Range of Motion --------------------------------- 6 2.2 Video-Based Motion Analysis Systems on Cervical Motion --------------------------- 7 2.3 Radiographic evaluations on Cervical Motion -------------------------------------------- 8 2.4 Videofluoroscopy Technology on Cervical Motion -------------------------------------- 9 2.5 Summary -------------------------------------------------------------------------------------- 10 Chapter 3 Methods and Experiments --------------------------------------------------------- 13 3.1 Feasibility of a Motion Analysis System on Measuring the Segmental Movements between Upper and Lower Cervical Spine -------------------------------- 13 3.1.1 Subjects --------------------------------------------------------------------------------- 13 3.1.2 Instrumentation ------------------------------------------------------------------------ 13 3.1.3 Procedure ------------------------------------------------------------------------------- 15 3.1.4 Data Analyses ------------------------------------------------------------------------- 16 3.1.5 Statistical Analyses ------------------------------------------------------------------- 17 3.2 Intervertebral Motion during Cervical Flexion and Extension ------------------------ 21 3.2.1 Subjects -------------------------------------------------------------------------------- 21 3.2.2 Instrumentation ----------------------------------------------------------------------- 21 3.2.3 Procedure ------------------------------------------------------------------------------ 22 3.2.4 Data Analyses ------------------------------------------------------------------------- 22 3.2.5 Statistical Analyses ------------------------------------------------------------------- 26 Chapter 4 Results and Discussion -------------------------------------------------------------- 28 4.1 Feasibility of a Motion Analysis System on Measuring the Segmental Movements between Upper and Lower Cervical Spine -------------------------------- 28 4.1.1 Subject Description ------------------------------------------------------------------- 28 4.1.2 Consistency Test between Paired Vertebral Angles ------------------------------ 28 4.1.3 Reliability Tests ----------------------------------------------------------------------- 29 4.1.4 Discussion ----------------------------------------------------------------------------- 37 4.2 Intervertebral Motion during Cervical Flexion and Extension ------------------------ 41 4.2.1 Subject Description ------------------------------------------------------------------- 41 4.2.2 Evaluation of errors and repeatability ---------------------------------------------- 41 4.2.3 Intervertebral angulation ------------------------------------------------------------- 42 4.2.4 Intervertebral translation ------------------------------------------------------------- 61 4.2.5 Discussion ----------------------------------------------------------------------------- 65 Chapter 5 Summary and Conclusion ---------------------------------------------------------- 75 5.1 Major Contributions ------------------------------------------------------------------------- 75 5.2 Future Research Directions ----------------------------------------------------------------- 76 References ------------------------------------------------------------------------------------------- 78

    Abbott JH, Fritz JM, McCane B, Shultz B, Herbison P, Lyons B, Stefanko G, Walsh RM (2006) Lumbar segmental mobility disorders: comparison of two methods of defining abnormal displacement kinematics in a cohort of patients with non-specific mechanical low back pain. BMC Musculoskeletal Disorders 2006, 7:45 DOI:10.1186/1471-2474-7-45

    Argenson JN, Scuderi GR, Komistek RD, Scott WN, Kelly MA, Aubaniac JM (2005) In vivo kinematic evaluation and design considerations related to high flexion in total knee arthroplasty. J Biomech 38(2):277-284.

    Axelsson P, Karlsson BS (2004) Intervertebral mobility in the progressive degenerative process. A radiostereometric analysis. Eur Spine J 13:567-572

    Bell GD (1991) Skeletal applications of videofluoroscopy. J Manipulative Physiol Ther 14:390-392

    Bhalla SK, Simmons EH (1969) Normal ranges of intervertebral joint motion of the cervical spine. Can J Surg 12:181-187

    Bogduk N, Mercer M (2000) Biomechanics of the cervical spine I: normal kinematics. Clin Biomech 15:633-648

    Boyle JJW, Milne N, Singer KP (2002) Influence of age on cervicothoracic spinal curvature: An ex vivo radiographic survey. Clin Biomech 17:361-367
    Choi H (2003) Quantitative assessment of co-contraction in cervical musculature. Med Eng Physics 25:133–140

    Day JS, Dumas GA (1998) Use of the magnetic tracking device to determine lumbosacral moments during asymmetric lifting. J Biomech 31:S119.

    Descarreaux M, Blouin JS, Teasdale N (2003) A non-invasive technique for measurement of cervical vertebral angle: report of a preliminary study. Eur Spine J 12:314-319

    Dvir Z, Penso-Zabludowski E (2003) The effects of protocol and test situation
    on maximal vs. submaximal cervical motion: medicolegal implications. Int J Legal Med 117 : 350–355

    Dvir Z, Prushansky T (2000) Reproducibility and instrument validity of a new ultrasonography-based system for measuring cervical spine kinematics
    Clin Biomech 15(9):658-664.

    Dvorak J, Froehlich D, Penning L, Baumgartner H, Panjabi MM (1998) Functional radiographic diagnosis of the cervical spine: flexion/extension. Spine 13:748-755

    Feipel V, Rondelet B, Le Pallec JP, Vogt F, Rooze M (1998) Analysing motion patterns in the cervical and lumbar spine. A new discrimination parameter of pathology. J Biomech 31:S119.

    Frobin W, Leivseth G, Biggemann M, Brinckmann P (2002) Sagittal plane segmental motion of the cervical spine: a new precision measurement protocol and normal motion data of healthy adults. Clin Biomech 17:21-31
    Frobin W, Leivseth G, Biggemann M, Brinckmann P (2002) Vertebral height, disc height, posteroanterior displacement and dens-atlas gap in the cervical spine: precision measurement protocol and normal data. Clin Biomech 17:423-431
    Hansson GA, Balogh I, Ohlsson K, Palsson B, Rylander L, Skerfving S (2000) Impact of physical exposure on neck and upper limb disorders in female workers. Appl Ergonomics 31:301-310

    Harada M, Abumi K, Ito M, Kaneda K (2000) Cineradiographic motion analysis of normal lumbar spine during forward and backward flexion. Spine 25:1932-1937

    Harrison DE, Holland B, Harrison DD, Janik TJ (2002) Further reliability analysis of the Harrison radiographic line-drawing methods: crossed ICCs for lateral posterior tangents and modified Risser-Ferguson method on AP views. J Manipulative Physiol Ther 25:93-98.

    Harvey SB, Hukins DWL (1998) Measurement of lumbar spinal flexion-extension kinematics from lateral radiographs: simulation of the effects of out-of-plane movement and errors in reference point placement. Med Eng Physics 20:403-409

    Hino H, Abumi K, Kanayama M, Kaneda K (1999) Dynamic motion analysis of normal and unstable cervical spines using cineradiography: an in vivo study. Spine 24:163-168

    Houck J, Yack HJ, Mulhausen P (1997) Neck mobility: the influence of age and a history of neck pain. Gait Posture 5:184

    Hsieh CY, Yeung BW (1986) Active neck motion measurements with a tape measure. J Orthop Sports Phys Ther 8:88-92.

    Huang RC, Tropiano P, Marnay T, Girardi FP, Lim MR, Cammisa FP (2006) Range of motion and adjacent level degeneration after lumbar total disc replacement. Spine J 6:242-247

    Jaric S, Collins JJ, Marwaha R, Russell E (2006) Interlimb and within limb force coordination in static bimanual manipulation task. Exp Brain Res 168: 88–97

    Kaminski TR, Bock C, Gentile AM (1995) The coordination between trunk and arm motion during pointing movements Exp Brain Res 106:457-466

    Karlqvist L, Bernmark E, Ekenvall L, Hagberg M, Isaksson A, Rosto T (1999) Computer mouse and track-ball operation: Similarities and differences in posture, muscular load and perceived exertion. Int J Ind Ergonomics 23:157-169.

    Kellis E, Baltzopoulo V (1999) In vivo determination of the patella tendon and hamstrings moment arms in adult males using videofluoroscopy during submaximal knee extension and flexion. Clin Biomech 14:118-124.

    Koerhuis CL, Winters JC, van der Helm FCT, Hof AL (2003) Neck mobility measurement by means of the ‘Flock of Birds’ electromagnetic tracking system
    Clin Biomech 18:14-18
    Kolstad F, Myhr G, Kvistad KA, Nygaard OP, Leivseth G (2005) Degeneration and height of cervical discs classified from MRI compared with precise height measurements from radiographs. Eur J Radiol 55:415-420

    Komistek RD, Stiehl JB, Buechel FF, Northcut EJ, Hajner ME (2000) A determination of ankle kinematics using fluoroscopy. Foot Ankle Int 21(4):343-350.

    Kristjansson E, Jonsson Jr. H (2002) Is the sagittal configuration of the cervical spine changed in women with chronic whiplash syndrome? A comparative omputer-assisted radiographic assessment. J Manipulative Physiol Ther 25:550-555

    Kuo LC, Su FC, Chiu HY, Yu CY (2002) Feasibility of using a video-based motion analysis system for measuring thumb kinematics. J Biomech 35:1499–1506

    Lantz CA, Chen J, Buch D (1999) Clinical validity and stability of active and passive cervical range of motion with regard to total and unilateral uniplanar motion. Spine 24:1082-1089

    Lee SW, Wong KWN, Chan MK, Yeung HM, Chiu JLF, Leong JCY (2002) Development and validation of a new technique for assessing lumbar spine motion. Spine 27:E215-E220

    Liszka-Hackzell JJ, Martin DP (2004) An analysis of the relationship between activity and pain in chronic and acute low back pain. Anesth Analg 99:477–81

    Marcotte J, Normand MC, Black P (2002) The kinematics of motion palpation and its effect on the reliability for cervical spine rotation. J Manipulative Physiol Ther 25(7):E1-E9.

    Masaki A, Norimasa Y (2001) Postural coordination patterns associated with the swinging frequency of arms. Exp Brain Res 139:120–125

    Matsunaga S, Onishi T, Sakou T (2001) Significance of occipitoaxial angle in subaxial lesion after occipitocervical fusion. Spine 16(2):161–165.

    Mayoux-Benhamou MA, Revel M, Vallee C (1997) Selective electromyography of dorsal neck muscles in humans. Exp Brain Res 113:353-360

    McAviney J, Schulz D, Bock R, Harrison DE, Holland B (2005) Determining the relationship between cervical lordosis and neck complaints. J Manipulative Physiol Ther 28:187-193

    McLean L, Tingley M, Scott RN, Rickards J (2001) Computer terminal work and the benefit of microbreaks. Appl Ergonomics 32:225-237.

    Muggleton JM, Allen R (1998) Insights into the measurement of vertebral translation in the sagittal plane. Med Eng Phys 20:21-32

    Ng HW, Teo EC, Zhang QH (2004) Biomechanical effects of C2-C7 intersegmental stability due to laminectomy with unilateral and bilateral facetectomy. Spine 29:1737-1745

    Nyland J, Johnson D (2004) Collegiate foot ball palters dis play more active servical spine mobility than high school football players. J Athl Training 39:146-150

    Okawa A, Shinomiya K, Komori H, Muneta T, Arai Y, Nakai O (1998) Dynamic motion study of the whole lumbar spine by videofluoroscopy. Spine 23:1743-1749

    Onan OA, Heggeness MH, Hipp JA (1998) A motion analysis of the cervical facet joint. 23:430-439

    Ordway NR, Seymour RJ, Donelson RG, Hojnowski LS, Edwards WT (1999) Cervical flexion, extension, protrusion, and retraction. A radiographic segmental analysis. Spine 24(3):240-7.

    Owens EF, Henderson CNR, Gudavalli MR, Pickar JG (2006) Head repositioning errors in normal student volunteers: a possible tool to assess the neck's neuromuscular system. Chiropractic & Osteopathy 14:5-12

    Palmer JB, Tanaka E, Ensrud E (2000) Motions of the posterior pharyngeal wall in human swallowing: a quantitative videofluorographic study. Arch Phys Med Rehabil 81:1520-1526

    Panjabi MM (2006) A hypothesis of chronic back pain: ligament subfailure injuries lead to muscle control dysfunction. Eur Spine J 15: 668–676

    Panjabi MM, White AA, John RM (1975) Cervical spine mechanics as function of transaction of components. J Biomech 8:327-336

    Penning L (1978) Normal movements of the cervical spine. Am J Roentgenol 130:317-326

    Pfeiffer M, Geisel T (2003) Analysis of a computer-assisted technique for measuring the lumbar spine on radiographs: Correlation of two methods. Acad Radiol 10:275-282

    Pickett GE, Rouleau JP, Duggal N (2005) Kinematic analysis of the cervical spine following implantation of an artificial cervical disc. Spine 30:1949-1954

    Puglisi F, Ridi R, Cecchi F, Bonelli A, Ferrari R (2004) Segmental vertebral motion in the assessment of neck range of motion in whiplash patients. Int J Legal Med 118: 235–239

    Puglisi F, Strimpakos N, Papathanasiou M, Kapreli E, Bonelli A, Sgambetterra S, Ferrari R (2006) Cervical spine segmental vertebral motion in healthy volunteers feigning restriction of neck flexion and extension. Int J Leg Med
    DOI 10.1007/s00414-006-0111-0

    Reitman CA, Hipp JA, Nguyen L, Esses SI (2004) Change in segmental intervertebral motion adjacent to cervical arthrodesis: A prospective study. Spine 29:E221-E226

    Reitman CA, Mauro KM, Nguyen L, Ziegler JM, Hipp JA (2004) Intervertebral motion between flexion and extension in asymptomatic individuals. Spine 29:2832-2843

    Roche CJ, Eyes BE, Whitehouse GH (2002) The rheumatoid cervical spine: signs of instability on plain cervical radiographs. Clin Radiol 57:241-249

    Rundquist PJ, Ludewig PM (2005) Correlation of 3-dimensional shoulder kinematics to function in subjects with idiopathic loss of shoulder range of motion. Phys Ther 85:636–647

    Sforza C, Grassi G, Fragnito N, Turci M, Ferrario VF (2002) Three-dimensional analysis of active head and cervical spine range of motion: effect of age in healthy male subjects. Clin Biomech 17:611-614
    Shum GLK, Crosbie J, Lee RYW (2006) Movement coordination of the lumbar spine and hip during a picking up activity in low back pain subjects. Eur Spine J.
    DOI 10.1007/s00586-006-0122-z

    Stiehl JB, Komistek RD, Dennis DA, Keblish PA (2001) Kinematics of the patellofemoral joint in total knee arthroplasty. J Arthroplasty 16(6):706-714.

    Su FC, Kuo LC, Chiu HY, Hsu HY (2002) The validity of using a video-based motion analysis system measuring maximal area of fingertip motion and angular variation. Proc Instn Mech Engrs Part H: J Eng in Med 216:257-263

    Szetoa GPY, Straker L, Raine S (2002) A field comparison of neck and shoulder postures in symptomatic and asymptomatic office workers. Appl Ergonomics 33:75–84.

    Tannoury T, Crowl A, Battaglia T, Chan D, Anderson DG (2002) Comparison of virtual fluoroscopy to conventional fluoroscopy for C1–C2 transarticular screw fixation. Spine 2(5):128S.
    Tousignant M, Boucher N, Bourbonnais J, Gravelle T, Quesnel M, Brosseau L (2001) Intratester and intertester reliability of the Cybex electronic digital inclinometer (EDI-320) for measurement of active neck flexion and extension in healthy subjects. Manual Ther 6:235-241

    Trott PH, Pearcy MJ, Ruston SA, Fulton I, Brien C (1996) Three-dimensional analysis of active cervical motion: the effect of age and gender. Clin Biomech 11:201-206

    Troyanovich SJ, Harrison D, Harrison DD, Harrison SO, Janik T, Holland B (2000) Chiropractic biophysics digitized radiographic mensuration analysis of the anteroposterior cervicothoracic view: a reliability study. J Manipulative Physiol Ther 23:476-482.

    Tsai KH, Chang GL, Lin HT, Kuo DC, Chang LT, Lin RM (2003) Differences of lumbosacral kinematics between degenerative and induced spondylolisthetic spine. Clin Biomech 18:S10-S16

    Van Mameren H, Drukker J, Sanches H, Beursgens J (1990) Cervical spine motion in the sagittal plane (I). Range of motion of actually performed movements, an
    x-ray cinematographic study. Eur J Morphol 28:47–68.

    Vasavada AN, Li S, Delp SL (1998) Influence of muscle morphometry and moment arms on the moment-generating capacity of human neck muscles. Spine 23(4):15: 412-422

    Vasavada AN, Peterson BW, Delp SL (2002) Three-dimensional spatial tuning of neck muscle activation in humans. Exp Brain Res 147:437–448

    Wang SF, Teng CC, Lin KH (2005) Measurement of cervical range of motion pattern during cyclic neck movement by an ultrasound-based motion system. Manual Ther 10:68-72

    Wearing SC, Smeathers JE, Yates B, Sullivan PM, Urry SR, Dubois P (2005) Errors in measuring sagittal arch kinematics of the human foot with digital fluoroscopy. Gait Posture 21:326–332.

    Whit AA, Panjabi MM (1990) Clinical Biomechanics of the spine, 2nd edition. JB Lippincott, Philadelphia.

    Witte RS, Witte JS (2001) Statistics, 6th Edition. Wiley, John & Sons, Incorporated. pp. 133-144

    Wolfenberger VA, Batenchuk GB (2002) A comparison of methods of evaluating cervical range of motion. J Manipulative Physiol Ther 25:154-160

    Wong KWN, Leong JCY, Chan MK, Luk KDK, Lu WW (2004) The flexion-extension Profile of lumbar spine in 100 healthy volunteers. Spine 29:1636-1641

    Wu SK, Lan HC, Kuo LC, Tsai SW, Chen CL, Su FC (2007) The feasibility of a video-based motion analysis system in measuring the segmental movements between upper and lower cervical spine. Gait Posture 26:161–166

    下載圖示 校內:2008-08-29公開
    校外:2009-08-29公開
    QR CODE