| 研究生: |
張瑋芳 Chang, Wei-Fang |
|---|---|
| 論文名稱: |
在複雜環境中應用相位累增與最大似然估計法以提升調頻連續波雷達系統之生理訊號及定位量測精準度 Using Phase Accumulation Demodulation and Maximum Likelihood Estimation to Improve the Accuracy of Vital Signs and Range Detection in Cluttered Environments for FMCW Radar Systems |
| 指導教授: |
楊慶隆
Yang, Chin-Lung |
| 學位類別: |
碩士 Master |
| 系所名稱: |
電機資訊學院 - 電機工程學系 Department of Electrical Engineering |
| 論文出版年: | 2018 |
| 畢業學年度: | 106 |
| 語文別: | 中文 |
| 論文頁數: | 69 |
| 中文關鍵詞: | 頻率調變連續波雷達 、相位累增解調 、最大似然估計法 、心跳頻率 、呼吸頻率 、生理訊號 |
| 外文關鍵詞: | frequency modulated continuous wave (FMCW), phase accumulation demodulation (PAD), maximum likelihood estimation (MLE), heart rate (HR), respiratory rate (RR), vital sign |
| 相關次數: | 點閱:148 下載:5 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本篇論文採用相位累增解調(Phase accumulation demodulation, PAD)技術用以分析5.8 GHz 調變連續波(Frequency modulation continuous wave, FMCW)雷達系統架構所獲取之訊號,使得在複雜環境中依然可以準確量測到生理訊號,並且使用最大似然估計法(Maximum likelihood estimation, MLE)將強環境干擾消除以還原因環境干擾而壓抑之生理訊號變化。除此之外,相位累增解調技術亦對噪聲有較大的容忍度,因此相較傳統使用複數訊號解調,此方法可以不需要以delay-line或是提高頻率調變斜率等方式提高拍頻訊號之頻率,使得系統得以朝可攜式系統進一步發展。實驗設計分為一維金屬板測距、無強環境干擾之生理量測與以金屬板做為干擾訊號之生理訊號量測。最後,在沒有delay-line的情境之下,使用相位累增解調技術之一維測距結果0.5 m至 3.05 m之平均誤差約為4.69 %,其結果與在相同操作頻率下使用delay-line之複數訊號解調結果相近。另外,在無環境干擾之生理訊號量測中,解調出心跳誤差率約為0.24 %;在有環境干擾之情境下,最大心跳誤差亦小於2.25 %。
This paper presents a noise tolerable method for FMCW radar systems to detect vital sign under strong reflected interference signals of stationary clutter. By using phase accumulated demodulation, vital sign detection can be demodulated clearly even under existence of strong clutters influence, and noise can be decreased so that the delay-line can be reduced for the compact system implementation. Moreover, the maximum likelihood estimation used to decrease the influence of the clutter. From the measurement results, the measured absolute range has 4.69% error from 0.5 m to 3.05 m in average. Moreover, the vital sign is 2.25% and 1.49% error with stationary clutter interferer 0.75 m and 1.3 m behind the human target.
[1] J. M. Munoz-Ferreras, Z. Peng, R. Gómez-García, G. Wang, C. Gu, and C. Li, "Isolate the clutter: Pure and hybrid linear-frequency-modulated continuous-wave (LFMCW) radars, " IEEE Microw. Mag., vol. 16, no. 4, pp. 40–54, May 2015
[2] J.-M. Muñoz-Ferreras, G. Wang, C. Li, and R. Gómez-García, "Mitigation of stationary clutter in vital-sign-monitoring linear-frequency-modulated continuous-wave radars, " IET Radar, Sonar, Navigat., vol. 9, no. 2, pp. 138–144, Feb. 2015.
[3] G. Wang, J.-M. Muñoz-Ferreras, C. Gu, C. Li, and R. Gómez-García, "Application of Linear-Frequency-Modulated Continuous-Wave (LFMCW) Radars for Tracking of Vital Signs, " IEEE Trans. on Microwave Theory and Techniques, vol. 62, no. 6, pp. 1387 - 1399, Jun. 2014
[4] J. C. Lin, "Microwave sensing of physiological movement and volume change: A review," Bioelectromagnetics, vol. 13, pp. 557-565, 1992.
[5] K. M. Chen, D. Misra, H. Wang, H. R. Chuang, and E. Postow, "An X-Band Microwave Life-Detection System," IEEE Transactions on Biomedical Engineering, vol. BME-33, pp. 697-701, 1986.
[6] F.-K. Wang, T.-S. Horng, K.-C. Peng, J.-K. Jau, J.-Y. Li, and C.-C. Chen, "Detection of Concealed Individuals Based on Their Vital Signs by Using a See-Through-Wall Imaging System With a Self-Injection-Locked Radar," Microwave Theory and Techniques, IEEE Transactions on, vol. 61, pp. 696-704, 2013.
[7] E. Yavari and O. Boric-Lubecke, "Channel Imbalance Effects and Compensation for Doppler Radar Physiological Measurements," IEEE Transactions on Microwave Theory and Techniques, vol. 63, pp. 3834-3842, 2015.
[8] J. Li, L. Liu, Z. Zeng, and F. Liu, "Advanced Signal Processing for Vital Sign Extraction With Applications in UWB Radar Detection of Trapped Victims in Complex Environments," IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, vol. 7, pp. 783-791, 2014.
[9] G. Wang, C. Gu, T. Inoue, and C. Li, "A Hybrid FMCW-Interferometry Radar for Indoor Precise Positioning and Versatile Life Activity Monitoring," IEEE Transactions on Microwave Theory and Techniques, vol. 62, pp. 2812-2822, 2014.
[10] B.-K. Park, O. Boric-Lubecke, and V. M. Lubecke, "Arctangent Demodulation With DC Offset Compensation in Quadrature Doppler Radar Receiver Systems, " IEEE Transactions on Microwave Theory and Techniques, vol. 55,no. 5 pp. 1073-1079,May 2007
[11] B.-K. Park, S. Yamada, V. M. Lubecke, and O. Boric-Lubecke, "Single-channel receiver limitations in Doppler radar measurements of periodic motion, " in IEEE Radio Wireless Symp., San Diego, CA,2006, pp. 99–102.
[12] J. Tu and J. Lin, "Respiration harmonics cancellation for Accurate Heart Rate measurement in non-contact vital sign detection," in Microwave Symposium Digest (IMS), 2013 IEEE MTT-S International, 2013, pp. 1-3.
[13] Y. Xiong, Z. Peng, G. Xing, W. Zhang, and, G. Meng, "Accurate and Robust Displacement Measurement for FMCW Radar Vibration Monitoring, " IEEE Sensors Journal, vol. 18 no, 3, pp. 1131-1139, Feb. 2018
[14] C. Li, and J. Lin, "Random Body Movement Cancellation in Doppler Radar Vital Sign Detection," Microwave Theory and Techniques, IEEE Transactions on, vol. 56, pp. 3143-3152, 2008.
[15] H. R. Chuang, H. C. Kuo, F. L. Lin, T. H. Huang, C. S. Kuo, and Y. W. Ou, "60-GHz Millimeter-Wave Life Detection System (MLDS) for Noncontact Human Vital-Signal Monitoring," IEEE Sensors Journal, vol. 12, pp. 602-609, 2012.
[16] P.-H. Wu, J.-K. Jau, C.-J. Li, T.-S. Horng, and P. Hsu, "Phase- and Self-Injection-Locked Radar for Detecting Vital Signs with Efficient Elimination of DC Offsets and Null Points," Microwave Theory and Techniques, IEEE Transactions on, vol. 61, pp. 685-695, 2013.
[17] A. Lazaro, D. Girbau, R. Villarino, and A. Ramos, "Vital signs monitoring using impulse based UWB signal," in 2011 41st European Microwave Conference, 2011, pp. 135-138.
[18] R. Lingyun, W. Haofei, K. Naishadham, Q. Liu, and A. E. Fathy, "Non-invasive detection of cardiac and respiratory rates from stepped frequency continuous wave radar measurements using the state space method," in 2015 IEEE MTT-S International Microwave Symposium, 2015, pp. 1-4.
[19] Aditya Singh, and Victor M. Lubecke, "Respiratory Monitoring and Clutter Rejection Using a CW Doppler Radar With Passive RF Tags",IEEE SENSORS JOURNAL, VOL. 12, NO. 3, MARCH 2012
[20] G. Wang, J.-M. Muñoz-Ferreras, R. Gómez-García, and C. Li, "Clutter Interference Reduction in Coherent FMCW Radar for Weak Physiological Signal Detection"2014 IEEE MTT-S International Microwave Symposium (IMS2014),2014, pp. 1-4
[21] 吳昌霖, "應用於微創手術之精準定距雷達暨相位殘段累增演算法," 碩士, 電機工程研究所, 國立中正大學, 嘉義縣, 2017.
[22] In Jae Myung,"Tutorial on maximum likelihood estimation",Journal of Mathematical Psychology,Volume 47, Issue 1, February 2003, Pages 90-100
[23] 陳鈺澄,"基於量化為單一位元之感測器觀測資料實行具通道感知之分散式最大似然估計",碩士, 電機工程研究所, 國立交通大學, 新竹縣, 2013.
[24] (2007). Dielectric properties of body issues. Available: http://niremf.ifac.cnr.it/tissprop/htmlclie/htmlclie.php
[25] C. Li, X. Yu, C. M. Lee, D. Li, L. Ran, and J. Lin, "High-Sensitivity Software-Configurable 5.8-GHz Radar Sensor Receiver Chip in 0.13-um CMOS for Noncontact Vital Sign Detection," IEEE Transactions on Microwave Theory and Techniques, vol. 58, pp. 1410-1419, 2010.
[26] VCO HMC431LP4E [Data Sheet]. Available: http://www.analog.com/media/en/technical-documentation/data-sheets/hmc431.pdf
[27] Power Splitter (1 to 4) EPS-60C data sheet. Available: http://www.e-channel.cn/cn/upLoad/down/month_1504/201504021411053398.pdf
[28] Power Amplifier ZRON-8G+. Available: https://www.minicircuits.com/pdfs/ZRON-8G+.pdf
[29] LNA HMC902LP3E [Data Sheet]. Available: http://www.analog.com/media/en/technical-documentation/data-sheets/hmc902.pdf
[30] LNA HMC392LC4 [Data Sheet]. Available: http://www.analog.com/media/en/technical-documentation/data-sheets/hmc392lc4.pdf
[31] Gain Block HMC311SC70 [Data Sheet]. Available: http://www.analog.com/media/en/technical-documentation/data-sheets/hmc311sc70.pdf
[32] I/Q Mixer HMC525LC4 [Data Sheet]. Available: http://www.analog.com/media/en/technical-documentation/data-sheets/hmc525.pdf
[33] NI DAQ-6361 Available: http://www.ni.com/pdf/manuals/374650c.pdf
[34] Laser Displacement Sensor Available: http://www.bosch-pt.com.tw/tw/zh/laser-measure-glm-30-131500-06010725k0.html
[35] Biopac MP 36 for ECG aquisition system Available: https://www.biopac.com/product/upgrade-to-mp36-system/
[36] L. Chioukh, H. Boutayeb, D. Deslandes, and K. Wu, "Noise and sensitivity of harmonic radar architecture for remote sensing and detection of vital signs, " IEEE Trans. Microw. Theory Techn., vol. 62, no. 9, pp. 1847–1855, Sep. 2014.
[37] W. Hu, Z. Zhao, Y. Wang and F. Lin, "Noncontact Accurate Measurement of Cardiopulmonary Activity Using a Compact Quadrature Doppler Radar Sensor, " IEEE Trans. Biomedical Engineering, vol. 61, no. 3, pp. 725-735, Mar. 2014
[38] S. Wang, A. Pohl, T. Jaeschke, M. Czaplik, M. Kony, S. Leonhardt, and N. Pohl, "A novel ultra-wideband 80 GHz FMCW radar system for contactless monitoring of vital signs, " in Proc. IEEE 37th Annu. Int. Conf. Eng. Med. Biol. Soc. (EMBC), Aug. 2015, pp. 4978–4981
[39] R. Lingyun, W. Haofei, K. Naishadham, Q. Liu, and A. E. Fathy, "Non-invasive detection of cardiac and respiratory rates from stepped frequency continuous wave radar measurements using the state space method, " in IEEE MTT-S Int. Microw. Symp. Dig., May 2015, pp. 1–4
[40] L. Ren, H. Wang, K. Naishadham, O. Kilic, and A. E. Fathy, "Phase-Based Methods for Heart Rate Detection Using UWB Impulse Doppler Radar, " in IEEE Trans. Microw. Theory Techn., Ocr. 2016, pp. 3319–3331.
[41] A. Lazaro, D. Girbau, and R. Villarino, "Analysis of vital signs monitoring using an IR-UWB radar, " Progress Electromagn. Res., vol. 100, pp. 265-284, Apr. 2010.
[42] 吳東霖,”應用 EMD自身呼吸消除技術以提升混合
FMCW-CW雷達架構之心跳生理訊號準確度研究”,碩士論文,電機工程研究所,國立成功大學,民國106年
[43] J. Tu and J. Lin, "Fast Acquisition of Heart Rate in Noncontact Vital Sign Radar Measurement Using Time-Window-Variation Technique" in IEEE Transcations on Instrumentation and Measurement, vol. 65, no. 1, January 2016, pp 112-122
[44] R. F. Harrinton, Time Harmonic Electromagnetic Fields, 1961.
[45] A. Anghel, G. Vasile, R. Cacoveanu, C. Ioana, and S. Ciochina, "Short-Range Wideband FMCW Radar for Millimetric Displacement Measurements," IEEE Transactions on Geoscience and Remote Sensing,vol. 52, no. 9, pp. 5633-5642, Sep. 2014.