| 研究生: |
鄔家禎 Woo, Jia-Jen |
|---|---|
| 論文名稱: |
高分子薄膜壓印成形之三維數值分析 Three-Dimensional Numerical Analysis on Film Formation of Polymeric Materials by Imprinting |
| 指導教授: |
林育芸
Lin, Yu-Yun |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 土木工程學系 Department of Civil Engineering |
| 論文出版年: | 2016 |
| 畢業學年度: | 104 |
| 語文別: | 中文 |
| 論文頁數: | 78 |
| 中文關鍵詞: | 接觸壓力 、耦合尤拉-拉格朗日 、高分子材料 、薄膜 |
| 外文關鍵詞: | contact pressure, CEL, polymeric material, film |
| 相關次數: | 點閱:51 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本文研究奈米壓印製程中,省略旋轉塗佈程序,在同一機台上利用石英板及玻璃基板位移將高分子材料壓印成薄膜的方法。以ABAQUS軟體建立有限元素數值模型探討此薄膜壓印成形過程中,石英板及玻璃基板位移控制對彈性模具變形的影響,及與高分子材料接觸產生之壓力和變形結果。分析模型分為軸對稱拉格朗日(Lagrangian)模型及三維耦合尤拉-拉格朗日(CEL)模型。前者探討在無高分子材料的狀態下,石英板與玻璃基板之位移控制對彈性模具變形及接觸壓力的影響。後者探討薄膜壓印成形過程,同時討論由石英板位移調整之彈性模具初始曲率,高分子材料初始厚度與分布半徑及材料性質,對結果的影響。數值結果顯示,當石英板與玻璃基板所在位置固定時,模具接觸壓力與位移方式無關。在石英板位置相同的情況下,高分子材料的介入將使其載重降低,但隨著高分子材料厚度變薄使模具接觸壓力增加,越接近無高分子材料之軸對稱模型數值結果。
This thesis studies a method of directly imprinting the polymeric material into a film by using the movement of the quartz and the glass substrate, and omitting the spin-coating process. The finite element analyses were carried out in ABAQUS to investigate the displacement control of the quartz and the glass substrate during the process of film formation, and the influence on the deformation of elastic mold, the resulting contact pressure and the deformation of polymeric material. The analyses were done by the axisymmetric model using the Lagrangian method, and the three-dimensional model utilizing the Coupled-Eulerian-Lagrangian (CEL) method respectively. The former mainly investigates the contact of the elastic mold controlled by the quartz and the substrate, neglecting the existence of polymeric materials. The latter probes the film formation of polymeric materials. The influence of the initial curvature of elastic mold controlled by the quartz, and the effects of the initial thickness, the radius and the properties of polymeric materials are also discussed. Referring the same positions of the quartz and glass substrate, the contact pressure of the elastic mold is independent of the moving method. The contact pressure of the elastic mold increases as the thickness of the polymeric material decreases. When the positions of the quartz are identical in the two models, the existence of polymeric materials would reduce the loads of the quartz. When the thickness of the polymeric material decreases, the discrepancies of the loads would reduce.
ABAQUS 6.12 User’s Manual
ABAQUS Example Problems Manual
J. F. Archard, E. W. Cowking, “Elastohydrodynamic Lubrication at Point Contacts”, Proceedings of the Institution of Mechanical Engineers, vol.,180, pt. 3B, pp. 47-56, 1965.
S. Y. Chou, P. R. Krauss, P. J. Renstrom, “Imprint of Sub-25 nm vias and
Trenches in Polymers”, Applied Physics Letters, vol. 67, p.3114, 1995.
M. Colburn, S. Johnson, M. Stewart, S. Damle, B. J. Jin, T. Bailey, M. Wedlake, T. Michaelson, S. V. Sreenivasan, J. Ekerdt, C. G. Willson, “Step and Flash Imprint Lithography: An Alternative Approach to High Resolution Patterning”, Proc.SPIE, vol.3676, pp. 379-389, 1999.
W. J. Daughton, F. L. Givens, “An Investigation of the Thickness Variation of Spun-
on Thin Films Commonly Associated with the Semiconductor Industry”, Journal
of The Electrochemical Society, vol.129, pp.173-179, 1982.
D. Dowson, G. R. Higginson, “A Numerical Solution to the Elastohydrodynamic Problem”, Journal of Mechanical Engineering Science, vol.1, no. 1, pp. 6-15, 1959.
A. G. Emslie, F. T. Bonner, L. G. Peck, “Flow of a Viscous Liquid on a Rotating
Disk”, Journal of Applied Physics, vol.29, pp.858-862, 1958.
B. J. Hamrock, B. O. Jacobson, S. R. Schmid, “Fundamentals of Fluid Film Lubrication”, Marcel Dekker, New York, pp. 163-200, 2004.
S. L. Hellstrom, “Basic Models of Spin Coating”, Stanford University, 2007.
S. A. Jenekhe, “Effect of Solvent Mass Transfer on Flow of Polymer Solution on a
Flat Rotating Disk”, Industrial & Engineering Chemistry Fundamentals, Vol.23,
pp.425-432, 1984.
S. S. Kumar, K. Anupam, T. Scarpas, C. Kasbergen, “Study of Hydroplaning Risk on
Rolling and Sliding Passenger Car," Procedia - Social and Behavioral Sciences,
Vol. 53, pp.1019-1027, 2012.
H. Lee, G. Y. Jung, “UV Curing Nanoimprint Lithography for Uniform Layers and
Minimized Residual Layers”, Japanese Journal of Applied Physics, vol.43,
pp.8369-8373, 2004.
J. E. Pilliod, E. G. Puckett, “Second-Order Accurate Volume-of-Fluid Algorithms for
Tracking Material Interfaces”, Journal of Computational Physics, vol.199,
pp.465-502, 2004.
G. Qiu, S. Henke, J. Grabe, “Application of a Coupled Eulerian-Lagrangian
Approach on Geomechanical Problems Involving Large Deformations”, Computers and Geotechnics, vol.38, pp.30-39, 2011.
M. D. Tyona, “A theoritical study on spin coating technique”, Advances in materials Research, vol.2, pp.195-208, 2013.
B. D. Washo, “Rheology and Modeling of the Spin Coating Process”, IBM Journal of Research and Development, vol.21, Issue2, pp. 190-198, 1977.
P. Yang, S. Wen, “Pure Squeeze Action in an Isothermal Elastohydrodynamically
Lubricated Spherical Conjunction Part 1 and 2”, Journal of Wear, vol.142, pp.1-
16, pp.17-30, 1991.
R. K. Yonkoski, D. S. Soane, “Model for Spin Coating in Microelectronic
Applications”, Journal of Applied Physics, vol.72, pp.725-740, 1992.
校內:2021-07-12公開