簡易檢索 / 詳目顯示

研究生: 陳奕任
Chen, I-Jen
論文名稱: 透過同步相量量測單元施行發電機模型參數驗證及識別
Model Parameter Verification and Identification of Generators via PMU Measurements
指導教授: 張簡樂仁
Chang-Chien, Le-Ren
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 電機工程學系
Department of Electrical Engineering
論文出版年: 2013
畢業學年度: 101
語文別: 中文
論文頁數: 91
中文關鍵詞: PMU粒子群最佳化演算法發電機組參數識別
外文關鍵詞: PMU, particle swarm optimization algorithm, generator parameters identification
相關次數: 點閱:88下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 為評估電力系統特性以確保系統運轉可靠性和安全性,電力系統動態模擬是最常採用且最為實際的方法,然而模擬結果的準確與否卻高度取決於發電機組及相關設備模型參數之準確性。傳統上電力公司所使用的監測設備之精確度並不足以用來評估模型的準確性,然而新一代具有較好量測精確度以及時間同步功能的設備如同步相量量測單元(Phasor Measurement Unit ,簡稱PMU)的監視將提供線上模型驗證所需資訊。如此我們可以運用PMU設備,於系統運轉遭遇事故時擷取相關數據,並透過粒子群最佳化演算法執行發電機組參數驗證及識別工作,以做為日後系統動態模擬的依據。
    本研究以台電公司數個發電機組運轉範例為基礎,闡述發電機組參數線上驗證與識別技術,並針對勵磁系統與電力系統穩定器模型參數作深入探討,期增進發電機組在線量測技術的實用性。

    Power system dynamic simulation is the most common and practical method to evaluate system performance and to ensure system security. The simulation results are highly depending upon model accuracy of generator and its auxiliary facilities. Typical monitoring equipment available to most utilities are not satisfactory to the precision requirement for validating the generator model. Yet, the newly developed monitoring device that inherits features of high resolution and time synchronization, such as Phasor Measurement Units (PMUs), can now provide required information for online model validation. Once the system disturbance data is captured by the PMUs, the recorded data can be gainfully used to perform generator parameters validation as well as identification by particle swarm optimization algorithm.
    This study elaborates parameter verification as well as identification techniques for generators, which are based on several operating cases of Taiwan Power Company. This thesis also gives deeply review on the characteristics of model parameters within the excitation system and power system stabilizer, in order to give practitioners a solid reference for practicing this online measurement technique.

    摘要 I Abstract II 誌謝 III 目錄 IV 表目錄 VII 圖目錄 VIII 符號索引 XI 第一章 緒論 1 1.1 前言 1 1.2 研究動機與目的 3 1.3 本文貢獻 3 1.4 論文架構 4 第二章 文獻探討 6 2.1 前言 6 2.2 同步相量量測單元(PMU)之應用 7 2.3 混合動態模擬簡介 13 2.4 線上發電機組參數驗證與識別 16 2.5 不平衡故障對混合動態模擬的影響 17 2.6 結論 20 第三章 發電機組參數驗證實例探討 21 3.1 前言 21 3.2 發電機組之簡化系統模型 22 3.2.1.和平電廠發電機出口端之簡化系統模型 22 3.2.2.中火電廠發電機組#8機之簡化系統模型 25 3.3 PMU紀錄事故數據之濾波 27 3.3.1.冬山匯流排PMU 27 3.3.2.中火電廠#8機匯流排PMU 41 3.4 發電機組參數驗證模擬結果 46 3.4.1.和平電廠#1、#2機之參數驗證模擬結果 46 3.4.2.中火電廠#8機之參數驗證模擬結果 51 3.5 結論 54 第四章 勵磁機與電力系統穩定器模型參數探討 56 4.1 前言 56 4.2 包含電力系統穩定器之勵磁系統簡介 56 4.3 台電系統和平發電機組之勵磁系統模型(EXST1)探討 59 4.4 台電系統和平發電機組之電力系統穩定器模型(IEEEST)探討 61 4.5 結論 64 第五章 台電系統之和平電廠發電機組參數識別實例探討 65 5.1 前言 65 5.2 發電機組模型識別參數之選取 65 5.3 發電機組模型之參數值限制 69 5.4 應用粒子群最佳化演算法執行參數識別 70 5.5 和平電廠發電機組參數識別模擬結果 73 5.6 結論 82 第六章 結論與未來研究方向 83 6.1 結論 83 6.2 未來研究方向 84 參考文獻 86 附錄一. 台中火力電廠#8機之勵磁機模型─EXAC3[24] 90 附錄二. 台中火力電廠#8機之模型參數 91

    [1] P. Kundur, Power System Stability and Control, McGraw-Hill, 1994.
    [2] P.L. Dandeno, R.L. Hauth, and R.P. Schulz, “Effects of Synchronous Machine Modeling in Large Scale System Studies, ” IEEE Transactions on Power Apparatus and Systems , vol. PAS-92 , no. 2, pp. 574 - 582 , March 1973.
    [3] D.N. Kosterev, C.W. Taylor, and W.A. Mittelstadt, “Model validation for the August 10, 1996 WSCC system outage,” IEEE Transactions on Power Systems, vol. 14, no. 3, pp. 967 - 979, Aug 1999.
    [4] 江榮城、廖清榮,“大林電廠參數驗證分析報告”,台灣電力公司綜合研究所研究報告,中華民國98年12月。
    [5] 江榮城、廖清榮,“大觀電廠參數驗證分析報告”,台灣電力公司綜合研究所研究報告,中華民國98年12月。
    [6] 楊俊哲,“大潭電廠三號機GT31參數驗證分析報告”,台灣電力公司綜合研究所研究報告,中華民國100年9月。
    [7] 楊俊哲,“大潭電廠三號機ST3參數驗證分析報告”,台灣電力公司綜合研究所研究報告,中華民國100年9月。
    [8] 楊俊哲,“協和電廠四號機參數驗證分析報告”,台灣電力公司綜合研究所研究報告,中華民國100年9月。
    [9] 楊俊哲,“明潭電廠三號機參數驗證分析報告”,台灣電力公司綜合研究所研究報告,中華民國100年9月。
    [10] 楊俊哲,“核三廠2號機參數驗證分析報告”,台灣電力公司綜合研究所研究報告,中華民國100年9月。
    [11] C.S. Liu et al., “Identification of exciter constants using a coherence function based weighted least squares approach ,” IEEE Transactions on Energy Conversion, vol. 8, no. 3, pp. 460 - 467 , Sep 1993.
    [12] M. Rasouli and M. Karrari, “Nonlinear identification of a brushless excitation system via field tests ,” IEEE Transactions on Energy Conversion, vol. 19, no. 4, pp. 733 - 740 , Dec. 2004.
    [13] T.Y. Guo, C.S. Liu, Y.T. Chen, C.K. Ko, and C.T. Huang, “Identification of model parameters of excitation system and power system stabilizer of Mingtan#6 via finalization field tests ,” IEEE Transactions on Power Systems, vol. 10, no. 2, pp. 795 - 802 , May 1995.
    [14] L. Hajagos et al., “Guidelines for Generator Stability Model Validation Testing,” in Power Engineering Society General Meeting, 2007. IEEE , Tampa, FL , 24-28 June 2007 , pp. 1 - 16.
    [15] J.C. Wang et al., “Identification of excitation system models based on on-line digital measurements,” IEEE Transactions on Power Systems, vol. 10, no. 3, pp. 1286-1293, Aug 1995.
    [16] E.P.T. Cari, L.F.C. Alberto, and N.G. Bretas, “A new methodology for parameter estimation of synchronous generator from disturbance measurements,” in Power and Energy Society General Meeting - Conversion and Delivery of Electrical Energy in the 21st Century, 2008 IEEE , Pittsburgh, PA , 20-24 July 2008 , pp. 1 - 7.
    [17] H.B. Karayaka, A. Keyhani, G.T. Heydt, B.L. Agrawal, and D.A. Selin, “Synchronous generator model identification and parameter estimation from operating data ,” IEEE Transactions on Energy Conversion, vol. 18, no. 1, pp. 121 - 126 , Mar 2003.
    [18] Y. Cheng, W.J. Lee, S.H. Huang, and J. Adams, “A hybrid method for the dynamic parameter identification of generators via on-line measurements,” in Industrial and Commercial Power Systems Technical Conference (I&CPS), 2010 IEEE , 9-13 May 2010.
    [19] D. Kosterev, “Hydro turbine-governor model validation in pacific northwest,” IEEE Transactions on Power Systems, vol. 19, no. 2, pp. 1144 - 1149 , May 2004.
    [20] Z. Huang, M. Kosterev, R. Guttromson, and T. Nguyen, “Model validation with hybrid dynamic simulation,” in Power Engineering Society General Meeting, 2006. IEEE , 16 October 2006.
    [21] K. R. Padiyar, Power System Dynamics :Stability and Control, BS Publications, 2008.
    [22] IEEE Power Engineering Society, IEEE Recommended Practice for Excitation System Models for Power System Stability Studies, IEEE Std 421.5-2005, Apr. 2006.
    [23] H. Golpîra, H. Bevrani, and A. H. Naghshbandy, “An approach for coordinated automatic voltage regulator-power system stabiliser design in large-scale interconnected power systems considering wind power penetration,” IET Gener. Transm. Distrib., vol. 6, Iss. 1, pp. 39-49, Jan. 2012.
    [24] PSS/E 32.0 Program Operation : Model Library, PTI,2009.
    [25] P. Kundur, M. Klein, G.J. Rogers, M.S. Zywno, “APPLICATION OF POWER SYSTEM STABILIZERS FOR ENHANCEMENT OF OVERALL SYSTEM STABILITY,” IEEE Transactions on Power Systems, vol. 4, no. 2, pp. 614-626, May 1989.
    [26] PSS/E 32.0 Program Application Guide : Volume II, PTI,2009.
    [27] M. shen, New framework for automatic parameter estimation of power system models, Ph.D. dissertation, Washington State University, WA, USA, 2000.
    [28] J.Q. Puma, D.G. Colome, Parameters identification of excitation system models using genetic algorithms, Generation, Transmission & Distribution, IET, 2/3 (2008), pp. 456-467.
    [29] Y. del Valle, G.K. Venayagamoorthy, S. Mohagheghi, J. C. Hernandez, and R.G. Harley, “Particle Swarm Optimization: Basic Concepts, Variants and Applications in Power Systems,” IEEE Transactions on Evolutionary Computation, vol. 12 , Issue:2, p. 171, April 2008.
    [30] J. Kennedy and R. Eberhart, Particle swarm optimization, in Proc. IEEE Int. Conf. Neural Network, vol. 4, (1995), pp. 1942-1948.
    [31] J. Yang, J. Zhang, W. Pan, Dynamic Equivalents of Power System Based on Extended Two Particle Swarm Optimization, Third International Conference on Natural Computation, vol. 5, (2007), pp. 609-613.

    下載圖示 校內:2015-08-29公開
    校外:2018-08-29公開
    QR CODE