| 研究生: |
黃浚銘 Huang, Jun-Ming |
|---|---|
| 論文名稱: |
轉移正顎手術計畫至術中之數位化咬板設計與製作 Digital Splint Design and Fabrication - Transfer Orthognathic Surgical Planning to Operation |
| 指導教授: |
方晶晶
Fang, Jing-Jing |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 機械工程學系 Department of Mechanical Engineering |
| 論文出版年: | 2013 |
| 畢業學年度: | 101 |
| 語文別: | 中文 |
| 論文頁數: | 124 |
| 中文關鍵詞: | 正顎手術 、正顎手術計畫 、術中咬板 |
| 外文關鍵詞: | Orthognathic surgery, Orthognathic surgical planning, Surgical splint |
| 相關次數: | 點閱:101 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究旨在開發一套轉移正顎手術計畫至術中的數位咬板產生程式。由於傳統咬板有手製變形量大、製作費時耗工、易受人為因素影響製作品質等缺點,故本研究提出以布林運算建立數位咬板的做法,以軟體加法設計技術有別於雷同研究以減法進行的方式,改善需事先建立無咬痕模板、無法解決干涉(Undercut)、無套合裕度等諸多問題。因此,為解決上述問題,本研究採由下而上(Bottom-up)的方式,取樣牙齒幾何外形作為建立咬板基底結構,由結構調整咬板牙痕外形以解決數位咬板安裝時所發生的干涉問題,並藉以擴張齒痕裕度。此外,設計自動調整咬板外形的演算方法,建立順沿齒列形狀且平滑的咬板外形,產生出客製化的數位咬板,並以快速成型(Rapid Prototype; RP)技術輸出為實體咬板後,利用實際案例進行驗證測試,驗證結果所獲得咬板設計平均誤差為0.269+-0.059mm與系統設計平均誤差為0.500+-0.196mm。總結而言,本研究提出的數位咬板設計方法需要針對不同的病例調整取樣精度,以降低套合卡阻問題,方可達到將手術計畫轉移至術中之目的。
The aim of this research is to build up a splint generated program for transferring orthognathic surgical planning to operation. Because of defects of traditional splint including multiple coordiates transformation, time consuming and manual errors. Some researchers employed Boolean different method to generated the digital splint have several pitfalls such as remodeling shape of the pre-build template, undercut and tolerence problems, In this study, we present a new method to solve above problems. Base on the surface modeling operation, we resample the shape of upper and lower crown of teeth to generate the fundamental structure of the splint, then adjusting bite prints to solve the problem of undercut and also expand teeth bite prints. Moreover, we present a new method to automatic adjust bite splint outlook along the arch in order to create smoothness. Finally, the physical splints are genereated by rapid prototype technology. We have verified deviations of the whole process which is 0.500+-0.196mm and, also accuracy of the generated bite splint is 0.269+-0.059mm. In conclusion, the method of designing digital splint can be used by modifying sampling accuracy to solve common undercut problems, which allow the digital bite splint successfully transfer surgical planning to be used in the operation room.
[1] 方晶晶,"電腦輔助口顎手術計劃臨床應用新技術開發",國科會機械固力學門與自動化學門研究專題成果報告,NSC 97-2212-E-028, 2009。
[2] Panula, K., "Correction of DentoFacial Deformities with Orthognathic Surgery," http://herkules.oulu.fi/isbn9514269934/html/index.html, 2013.
[3] Reyneke, J. P., Bryant, R. S., Suuronen, R., and Becker, P. J., "Postoperative Skeletal Stability Following Clockwise and Counter-clockwise Rotation of the Maxillomandibular Complex Compared to Conventional Orthognathic Treatment," British Journal of Oral and Maxillofacial Surgery, Vol.45, No.1, pp.56-64, 2007.
[4] Bouchard, C. and Landry, P.-É., "Precision of Maxillary Repositioning During Orthognathic Surgery: A Prospective Study," International Journal of Oral and Maxillofacial Surgery, Vol.42, No.5, pp.592-596, 2013.
[5] Hillerup, S., Bjørn-Jørgensen, J., Donatsky, O., and Jacobsen, P. U., "Precision of Orthognathic Surgery. A Computerized Cephalometric Analysis of 27 Patients," International Journal of Oral and Maxillofacial Surgery, Vol.23, No.5, pp.255-261, 1994.
[6] Orentlicher, G., Goldsmith, D., and Horowitz, A., "Applications of 3-Dimensional Virtual Computerized Tomography Technology in Oral and Maxillofacial Surgery: Current Therapy," Journal of Oral and Maxillofacial Surgery, Vol.68, No.8, pp.1933-1959, 2010.
[7] Rustemeyer, J., Groddeck, A., Zwerger, S., and Bremerich, A., "The Accuracy of Two-dimensional Planning for Routine Orthognathic Surgery," British Journal of Oral and Maxillofacial Surgery, Vol.48, No.4, pp.271-275, 2010.
[8] Wolford, L. M. and Galiano, A., "A Simple and Accurate Method for Mounting Models in Orthognathic Surgery," Journal of Oral and Maxillofacial Surgery, Vol.65, No.7, pp.1406-1409, 2007.
[9] Paul, P. E., Barbenel, J. C., Walker, F. S., Khambay, B. S., Moos, K. F., and Ayoub, A. F., "Evaluation of an Improved Orthognathic Articulator System: 1. Accuracy of Cast Orientation," International Journal of Oral and Maxillofacial Surgery, Vol.41, No.2, pp.150-154, 2012.
[10] Paul, P. E., Barbenel, J. C., Walker, F. S., B.S.Khambay, Moos, K. F., and Ayoub, A. F., "Evaluation of an Improved Orthognathic Articulator system. 2. Accuracy of Occlusal Wafers," International Journal of Oral and Maxillofacial Surgery, Vol.41, No.2, pp.155-159, 2012.
[11] Omar, E. A. Z. and Bamber, M. A., "Orthognathic Model Surgery by Using of a Passive Robot Arm," The Saudi Dental Journal, Vol.22, No.2, pp.47-55, 2010.
[12] Wylie, G. A., Laverick, S., McIntyre, G. T., and Epker, B. N., "Mandibular Model Surgery for Orthognathic Surgery: The Perth Technique to Improve Planning," Journal of Oral and Maxillofacial Surgery, Vol.69, No.3, pp.950-953, 2011.
[13] Sharifi, A., Jones, R., Ayoub, A., Moos, K., Walker, F., Khambay, B., and McHugh, S., "How Accurate is Model Planning for Orthognathic Surgery?," International Journal of Oral and Maxillofacial Surgery, Vol.37, No.12, pp.1089-1093, 2008.
[14] Zizelmann, C., Hammer, B., Gellrich, N.-C., Schwestka-Polly, R., Rana, M., and Bucher, P., "An Evaluation of Face-Bow Transfer for the Planning of Orthognathic Surgery," Journal of Oral and Maxillofacial Surgery, Vol.70, No.8, pp.1944-1950, 2012.
[15] Barbenel, J. C., Paul, P. E., Khambay, B. S., Walker, F. S., Moos, K. F., and Ayoub, A. F., "Errors in Orthognathic Surgery Planning: the Effect of Inaccurate Study Model Orientation," International Journal of Oral and Maxillofacial Surgery, Vol.39, No.11, pp.1103-1108, 2010.
[16] Jacobson, R. and Sarver, D. M., "The Predictability of Maxillary Repositioning in LeFort I Orthognathic Surgery," American Journal of Orthodontics and Dentofacial Orthopedics, Vol.122, No.2, pp.142-154, 2002.
[17] Lee, L. H., Jun, J. H., Danganan, M., Pogrel, M. A., Kushner, H., and Lee, J. S., "Orthognathic Surgery for the Asian patient and the Influence of the Surgeon's Background on Treatment," International Journal of Oral and Maxillofacial Surgery, Vol.40, No.5, pp.458-463, 2011.
[18] Xia, J. J., McGrory, J. K., Gateno, J., Teichgraeber, J. F., Dawson, B. C., Kennedy, K. A., Lasky, R. E., English, J. D., Kau, C. H., and McGrory, K. R., "A New Method to Orient 3-Dimensional Computed Tomography Models to the Natural Head Position: A Clinical Feasibility Study," Journal of Oral and Maxillofacial Surgery, Vol.69, No.3, pp.584-591, 2011.
[19] McCormick, S. U. and Drew, S. J., "Virtual Model Surgery for Efficient Planning and Surgical Performance," Journal of Oral and Maxillofacial Surgery, Vol.69, No.3, pp.638-644, 2011.
[20] Dai, J., Wang, X., Hu, G., and Shen, S. G., "A New Method to Move Mandible to Intercuspal Position in Virtual Three-Dimensional Orthognathic Surgery by Integrating Primary Occlusion Model," Journal of Oral and Maxillofacial Surgery, Vol.70, No.9, pp.e484-e489, 2012.
[21] Polley, J. W. and Figueroa, A. A., "Orthognathic Positioning System: Intraoperative System to Transfer Virtual Surgical Plan to Operating Field During Orthognathic Surgery," Journal of Oral and Maxillofacial Surgery, Vol.71, No.5, pp.911-920, 2013.
[22] Zinser, M. J., Mischkowski, R. A., Sailer, H. F., and Zöller, J. E., "Computer-assisted Orthognathic Surgery: Feasibility Study Using Multiple CAD/CAM Surgical Splints," Oral Surgery, Oral Medicine, Oral Pathology and Oral Radiology, Vol.113, No.5, pp.673-687, 2012.
[23] Persson, A. S. K., Odén, A., Andersson, M., and Sandborgh-Englund, G., "Digitization of Simulated Clinical Dental Impressions: Virtual Three-dimensional Analysis of Exactness," Dental Materials, Vol.25, No.7, pp.929-936, 2009.
[24] Aboul-Hosn Centenero, S. and Hernández-Alfaro, F., "3D Planning in Orthognathic Surgery: CAD/CAM Surgical Splints and Prediction of the Soft and Hard Tissues Results – Our Experience in 16 Cases," Journal of Cranio-Maxillofacial Surgery, Vol.40, No.2, pp.162-168, 2012.
[25] Kim, B. C., Lee, C. E., Park, W., Kang, S. H., Zhengguo, P., Yi, C. K., and Lee, S.-H., "Integration Accuracy of Digital Dental Models and 3-dimensional Computerized toMography Images by Sequential Point- and Surface-based Markerless Registration," Oral Surgery, Oral Medicine, Oral Pathology, Oral Radiology, and Endodontology, Vol.110, No.3, pp.370-378, 2010.
[26] Uechi, J., Okayama, M., Shibata, T., Muguruma, T., Hayashi, K., Endo, K., and Mizoguchi, I., "A Novel Method for the 3-dimensional Simulation of Orthognathic Surgery by Using a Multimodal Image-fusion Technique," American Journal of Orthodontics and Dentofacial Orthopedics, Vol.130, No.6, pp.786-798, 2006.
[27] Swennen, G. R. J., Barth, E. L., Eulzer, C., and Schutyser, F., "The Use of a New 3D Splint and Double CT Scan Procedure to Obtain an Accurate Anatomic Virtual Augmented Model of the Skull," International Journal of Oral and Maxillofacial Surgery, Vol.36, No.2, pp.146-152, 2007.
[28] Swennen, G. R. J., Mommaerts, M. Y., Abeloos, J., De Clercq, C., Lamoral, P., Neyt, N., Casselman, J., and Schutyser, F., "A Cone-beam CT Based Technique to Augment the 3D Virtual Skull Model with a Detailed Dental Surface," International Journal of Oral and Maxillofacial Surgery, Vol.38, No.1, pp.48-57, 2009.
[29] Gateno, J., Xia, J., Teichgraeber, J. F., and Rosen, A., "A New Technique for the Creation of a Computerized Composite Skull Model," Journal of Oral and Maxillofacial Surgery, Vol.61, No.2, pp.222-227, 2003.
[30] Cutting, C., Bookstein, F. L., Grayson, B., Fellingham, L., and McCarthy, J. G., "Three-Dimensional Computer-Assisted Design of Craniofacial Surgical Procedures: Optimization and Interaction with Cephalometric and CT-Based Models," Plastic and Reconstructive Surgery, Vol.77, No.6, pp.877-885, 1986.
[31] Choi, J.-Y., Hwang, J.-M., and Baek, S.-H., "Virtual Model Surgery and Wafer Fabrication Using 2-dimensional Cephalograms, 3-dimensional Virtual Dental Models, and Stereolithographic Technology," Oral Surgery, Oral Medicine, Oral Pathology and Oral Radiology, Vol.113, No.2, pp.193-200, 2012.
[32] Ghanai, S., Marmulla, R., Wiechnik, J., Mühling, J., and Kotrikova, B., "Computer-assisted Three-dimensional Surgical Planning: 3D Virtual Articulator: Technical Note," International Journal of Oral and Maxillofacial Surgery, Vol.39, No.1, pp.75-82, 2010.
[33] Chapuis, J., Ryan, P., Blaeuer, M., Langlotz, F., Hallermann, W., Schramm, A., and Caversaccio, M., "A New Approach for 3D Computer-assisted Orthognathic Surgery—First Clinical Case," International Congress Series, Vol.1281, No.0, pp.1217-1222, 2005.
[34] Kim, B. C., Lee, C. E., Park, W., Kim, M.-K., Zhengguo, P., Yu, H.-S., Yi, C. K., and Lee, S.-H., "Clinical Experiences of Digital Model Surgery and the Rapid-prototyped Wafer for Maxillary Orthognathic Surgery," Oral Surgery, Oral Medicine, Oral Pathology, Oral Radiology, and Endodontology, Vol.111, No.3, pp.278-285.e1, 2011.
[35] Xia, J., Ip, H. H. S., Samman, N., Wang, D., Kot, C. S. B., Yeung, R. W. K., and Tideman, H., "Computer-assisted Three-dimensional Surgical Planning and Simulation: 3D Virtual Osteotomy," International Journal of Oral and Maxillofacial Surgery, Vol.29, No.1, pp.11-17, 2000.
[36] Swennen, G. R. J., Mollemans, W., and Schutyser, F., "Three-Dimensional Treatment Planning of Orthognathic Surgery in the Era of Virtual Imaging," Journal of Oral and Maxillofacial Surgery, Vol.67, No.10, pp.2080-2092, 2009.
[37] Choi, J. Y., Song, K. G., and Baek, S. H., "Virtual Model Surgery and Wafer Fabrication for Orthognathic Surgery," International Journal of Oral and Maxillofacial Surgery, Vol.38, No.12, pp.1306-1310, 2009.
[38] Swennen, G. R. J. and Schutyser, F., "Three-dimensional Cephalometry: Spiral Multi-slice vs Cone-beam Computed Tomography," American Journal of Orthodontics and Dentofacial Orthopedics, Vol.130, No.3, pp.410-416, 2006.
[39] Gateno, J., Xia, J. J., and Teichgraeber, J. F., "New 3-Dimensional Cephalometric Analysis for Orthognathic Surgery," Journal of Oral and Maxillofacial Surgery, Vol.69, No.3, pp.606-622, 2011.
[40] Gateno, J., Xia, J. J., and Teichgraeber, J. F., "Effect of Facial Asymmetry on 2-Dimensional and 3-Dimensional Cephalometric Measurements," Journal of Oral and Maxillofacial Surgery, Vol.69, No.3, pp.655-662, 2011.
[41] Terajima, M., Yanagita, N., Ozeki, K., Hoshino, Y., Mori, N., Goto, T. K., Tokumori, K., Aoki, Y., and Nakasima, A., "Three-dimensional Analysis System for Orthognathic Surgery Patients with Jaw Deformities," American Journal of Orthodontics and Dentofacial Orthopedics, Vol.134, No.1, pp.100-111, 2008.
[42] Xia, J., Samman, N., Yeung, R. W. K., Wang, D., Shen, S. G. F., Ip, H. H. S., and Tideman, H., "Computer-assisted Three-dimensional Surgical Planning and Simulation: 3D Soft Tissue Planning and Prediction," International Journal of Oral and Maxillofacial Surgery, Vol.29, No.4, pp.250-258, 2000.
[43] Kaipatur, N. R. and Flores-Mir, C., "Accuracy of Computer Programs in Predicting Orthognathic Surgery Soft Tissue Response," Journal of Oral and Maxillofacial Surgery, Vol.67, No.4, pp.751-759, 2009.
[44] Nadjmi, N., Mollemans, W., Daelemans, A., Van Hemelen, G., Schutyser, F., and Bergé, S., "Virtual Occlusion in Planning Orthognathic Surgical Procedures," International Journal of Oral and Maxillofacial Surgery, Vol.39, No.5, pp.457-462, 2010.
[45] Kaipatur, N., Al-Thomali, Y., and Flores-Mir, C., "Accuracy of Computer Programs in Predicting Orthognathic Surgery Hard Tissue Response," Journal of Oral and Maxillofacial Surgery, Vol.67, No.8, pp.1628-1639, 2009.
[46] Wong, T.-Y., Fang, J.-J., Chung, C.-H., Huang, J.-S., and Lee, J.-W., "Comparison of 2 Methods of Making Surgical Models for Correction of Facial Asymmetry," Journal of Oral and Maxillofacial Surgery, Vol.63, No.2, pp.200-208, 2005.
[47] Tucker, S., Cevidanes, L. H. S., Styner, M., Kim, H., Reyes, M., Proffit, W., and Turvey, T., "Comparison of Actual Surgical Outcomes and 3-Dimensional Surgical Simulations," Journal of Oral and Maxillofacial Surgery, Vol.68, No.10, pp.2412-2421, 2010.
[48] Hsu, S. S.-P., Gateno, J., Bell, R. B., Hirsch, D. L., Markiewicz, M. R., Teichgraeber, J. F., Zhou, X., and Xia, J. J., "Accuracy of a Computer-Aided Surgical Simulation Protocol for Orthognathic Surgery: A Prospective Multicenter Study," Journal of Oral and Maxillofacial Surgery, Vol.71, No.1, pp.128-142, 2013.
[49] Song, K.-G. and Baek, S.-H., "Comparison of the Accuracy of the Three-dimensional Virtual Method and the Conventional Manual Method for Model Surgery and Intermediate Wafer Fabrication," Oral Surgery, Oral Medicine, Oral Pathology, Oral Radiology, and Endodontology, Vol.107, No.1, pp.13-21, 2009.
[50] O’Neil, M., Khambay, B., Moos, K. F., Barbenel, J., Walker, F., and Ayoub, A., "Validation of a New Method for Building a Three-dimensional Physical Model of the Skull and Dentition," British Journal of Oral and Maxillofacial Surgery, Vol.50, No.1, pp.49-54, 2012.
[51] Tai-Hong, K., Tung-Yiu, W., Tung-Chin, W., and Jing-Jing, F., "Optical Tracking-Based Model Surgery for Orthognathic Surgical Planning Using a Quantifying Evaluation Method," Information Technology in Biomedicine, IEEE Transactions on, Vol.16, No.6, pp.1193-1199, 2012.
[52] Danesh, G., Lippold, C., Joos, U., and Meyer, U., "Technical and Clinical Assessment of the Use of a New Material-based Splint in Orthognathic Surgery," International Journal of Oral and Maxillofacial Surgery, Vol.35, No.9, pp.796-799, 2006.
[53] Gateno, J., Xia, J., and Teichgraeber, J. F., "Method and Apparatus for Fabricating Orthognathic Surgical Splints", United States Patent: 6671539, 2003.
[54] Metzger, M. C., Hohlweg-Majert, B., Schwarz, U., Teschner, M., Hammer, B., and Schmelzeisen, R., "Manufacturing Splints for Orthognathic Surgery Using a Three-dimensional Printer," Oral Surgery, Oral Medicine, Oral Pathology, Oral Radiology, and Endodontology, Vol.105, No.2, pp.e1-e7, 2008.
[55] Gateno, J., Xia, J., Teichgraeber, J. F., Rosen, A., Hultgren, B., and Vadnais, T., "The Precision of Computer-generated Surgical Splints," Journal of Oral and Maxillofacial Surgery, Vol.61, No.7, pp.814-817, 2003.
[56] Omura, S., Kimizuka, S., Iwai, T., and Tohnai, I., "An Accurate Maxillary Superior Repositioning Technique without Intraoperative Measurement in Bimaxillary Orthognathic Surgery," International Journal of Oral and Maxillofacial Surgery, Vol.41, No.8, pp.949-951, 2012.
[57] Zinser, M. J. and Zöller, J. E., "Method for Production of at least one surgical splint, in particular for computer-assisted maxillofacial operations and transposition osteatomies," WO 2008/031562, 2008.
[58] Shehab, M. F., Barakat, A. A., AbdElghany, K., Mostafa, Y., and Baur, D. A., "A Novel Design of a Computer-generated Splint for Vertical Repositioning of the Maxilla after Le Fort I Osteotomy," Oral Surgery, Oral Medicine, Oral Pathology and Oral Radiology, Vol.115, No.2, pp.e16-e25, 2013.
[59] Mischkowski, R. A., Zinser, M. J., Kübler, A. C., Krug, B., Seifert, U., and Zöller, J. E., "Application of an Augmented Reality Tool for Maxillary Positioning in Orthognathic Surgery – A Feasibility Study," Journal of Cranio-Maxillofacial Surgery, Vol.34, No.8, pp.478-483, 2006.
[60] Lo, J., Xia, J. J., Zwahlen, R. A., and Cheung, L. K., "Surgical Navigation in Correction of Hemimandibular Hyperplasia: A New Treatment Strategy," Journal of Oral and Maxillofacial Surgery, Vol.68, No.6, pp.1444-1450, 2010.
[61] Sadiq, Z., Collyer, J., Sneddon, K., and Walsh, S., "Orthognathic Treatment of Asymmetry: Two Cases of “Waferless” Stereotactic Maxillary Positioning," British Journal of Oral and Maxillofacial Surgery, Vol.50, No.2, pp.e27-e29, 2012.
[62] Li, B., Zhang, L., Sun, H., Yuan, J., Shen, S. G. F., and Wang, X., "A Novel Method of Computer Aided Orthognathic Surgery Using Individual CAD/CAM Templates: a Combination of Osteotomy and Repositioning Guides," British Journal of Oral and Maxillofacial Surgery, No.0.
[63] Bai, S., Bo, B., Bi, Y., Wang, B., Zhao, J., Liu, Y., Feng, Z., Shang, H., and Zhao, Y., "CAD/CAM Surface Templates as an Alternative to the Intermediate Wafer in Orthognathic Surgery," Oral Surgery, Oral Medicine, Oral Pathology, Oral Radiology, and Endodontology, Vol.110, No.5, pp.e1-e7, 2010.
[64] Bai, S., Shang, H., Liu, Y., Zhao, J., and Zhao, Y., "Computer-Aided Design and Computer-Aided Manufacturing Locating Guides Accompanied With Prebent Titanium Plates in Orthognathic Surgery," Journal of Oral and Maxillofacial Surgery, Vol.70, No.10, pp.2419-2426, 2012.
[65] Olszewski, R., Tranduy, K., and Reychler, H., "Innovative Procedure for Computer-assisted Genioplasty: Three-dimensional Cephalometry, Rapid-prototyping Model and Surgical Splint," International Journal of Oral and Maxillofacial Surgery, Vol.39, No.7, pp.721-724, 2010.
[66] Sensable Dental, "Sensable S3," http://thinglab.com.au/downloads/s3.pdf, 2013.
[67] Jing-Jing Fang, T.-Y. W., Tai-Hong Kuo, Tung-Chin Wu, "Orthognathic Planning System and Method," US 13/543,298, 2013.
[68] Jing-Jing Fang, T.-Y. W., Tai-Hong Kuo, Jia-Chuang Tsai, "Mounting Method of Dental Cast," EP20120175148, 2013.
[69] Tai-Hong Kuo, T.-Y. W., Tung-Chin Wu, and Jing-Jing Fang, "Optical Tracking-Based Model Surgery for Orthognathic Surgical Planning Using a Quantifying Evaluation Method," IEEE Transactions on Information Technology in Biomedicine, Vol.16, No.6, 2012.
[70] 蔡佳彰,"導航咬合器雛形系統之開發",國立成功大學機械工程學系碩士論文,2010。
[71] Ferrario, V. F., Sforza, C., Miani, A., Jr., and Tartaglia, G., "Mathematical Definition of the Shape of Dental Arches in Human Permanent Healthy Dentitions," European Journal of Orthodontics, Vol.16, No.4, pp.287-94, Aug, 1994.
[72] 何佳霖,"電腦輔助植牙植體方位計劃與導引板設計於臨床之應用",國立成功大學機械工程學系碩士論文,2009。
[73] 3D Systems, Inc. Limited, "SLA 3500 Solid Imaging System," http://www.3dsystems.com/products/datafiles/sla3500/datasheets/SLA3500_e.pdf, 2013.
[74] 3D Systems Europe Ltd., "SLA® 7000 SYSTEM," http://www.3dsystems.com/products/datafiles/sla7000/datasheets/SLA7000_uk_aktualisiert.qxd.pdf, 2013.
校內:2018-08-29公開