簡易檢索 / 詳目顯示

研究生: 謝佳佑
Hsieh, Jia-You
論文名稱: 釩酸鐵/二硫化鎢異質結構用於提升光電化學水分解性能之研究
FeVO4/WS2 Heterostructures for Improving Photoelectrochemical Water Splitting
指導教授: 蘇彥勳
Su, Yen-Hsun
學位類別: 碩士
Master
系所名稱: 工學院 - 材料科學及工程學系
Department of Materials Science and Engineering
論文出版年: 2025
畢業學年度: 113
語文別: 中文
論文頁數: 125
中文關鍵詞: 光電化學水分解釩酸鐵二硫化鎢異質結構
外文關鍵詞: Photoelectrochemical (PEC), Water splitting, Iron vanadate, Tungsten disulfide, Heterostructure
相關次數: 點閱:16下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 光電化學(photoelectrochemical,PEC)水分解因能夠直接利用太陽能將水裂解為氫氣與氧氣,被認為是一種極具潛力的綠色氫能生產技術。近年來,三斜釩酸鐵(triclinic iron vanadate,FeVO4)因其適當的能隙、高理論光電流密度及優異的穩定性,成為PEC電極材料的研究熱點。此外,釩酸鐵由地球上豐富的元素組成,具備低成本、大規模生產的潛力。然而,塊狀釩酸鐵材料在PEC水分解應用中的效率受到其較差的電荷傳輸能力與有限的光吸收範圍的限制。因此,透過形貌調控將釩酸鐵轉變為奈米結構,以提升比表面積、表面缺陷、增強電荷分離效率,已成為改善其光電催化性能的重要策略。而二硫化鎢(tungsten disulfide,WS2)具備獨特的層狀結構與高導電性,可作為助催化劑促進電荷轉移,進一步降低析氧反應(Oxygen evolution reation,OER)反應的過電位,從而提升水分解反應速率。透過二硫化鎢的修飾,釩酸鐵電極可有效減少載流子復合現象,顯著提高PEC光電流密度,進而增強外加偏壓光-電轉換效率(Applied Bias Photon-to-current Efficiency,ABPE)。目前,我們已成功使用水熱合成法及高溫段燒法合成出不同形貌且高結晶度的釩酸鐵,並透過液相剝離法製備二硫化鎢奈米片。接著進一步將兩者複合形成二硫化鎢修飾釩酸鐵(FeVO4/WS2)異質結構(heterostructure)電極,以提升PEC水分解效能。電化學測試結果顯示,二硫化鎢修飾釩酸鐵電極在模擬太陽光照條件下表現出顯著提升的光電流響應,與釩酸鐵相比,其PEC性能得到顯著改善,光電流密度最高提升至原先的3倍,ABPE則提高至原先的10倍。本研究首次提出以二硫化鎢修飾釩酸鐵異質結構作為PEC光陽極的設計策略,為未來PEC水分解技術提供新的發展方向。透過材料形貌調控、缺陷工程與異質結構的結合,本研究有望為可再生氫能生產提供更具競爭力的解決方案,並推動PEC技術在太陽能轉換與清潔能源領域的實際應用。

    This study presents the development and characterization of FeVO4/WS2 heterostructures for enhanced photoelectrochemical (PEC) water splitting applications. Iron vanadate (FeVO4) was synthesized via a hydrothermal method with systematic pH adjustment (pH 1, 2, 4, 7, 10) to achieve morphological control, resulting in various nanostructures ranging from nanorods and nanoparticles to nanopolyhedra. Among these morphologies, FeVO4 nanorods demonstrated superior charge separation efficiency, making them optimal candidates for PEC applications. To further enhance performance, WS2 nanosheets prepared through liquid-phase exfoliation (LPE) were integrated with FeVO4 to construct FeVO4/WS2 heterostructures using a drop-coating technique. Comprehensive characterization through X-ray diffraction (XRD), Scanning Electron microscope (SEM), transmission electron microscope (TEM), and X-ray photoelectron spectroscope (XPS) confirmed successful synthesis of FeVO4, WS2 nanosheets and heterostructure formation. XPS analysis revealed significant changes in elemental valence state ratios upon heterojunction formation, with pristine FeVO4 F2 sample showing optimal defect concentration characterized by moderate oxygen vacancy (4.17%) and V4+ (18.97%) ratios. After WS2 modification, increases in oxygen vacancies and V4+ concentrations were observed across all samples. The systematic increase in oxygen vacancy and V4+ confirmed electron transfer from WS2 to FeVO4, establishing FeVO4 as the electron acceptor and WS2 as the electron donor within the heterostructure. Mott-Schottky analysis confirmed the formation of an n-n type heterojunction, with both pristine FeVO4 and WS2 exhibiting n-type semiconducting behavior. The decreased slope observed in FeVO4/WS2 heterostructures indicated increased carrier concentration, contributing to improved electrical conductivity and charge transport properties. Ultraviolet photoelectron spectroscopy (UPS) revealed Type-II band alignment, facilitating spatial separation of photogenerated charge carriers and suppressing recombination processes. Linear sweep voltammetry (LSV) measurement demonstrated F2 sample exhibits the best PEC performance among pristine FeVO4. After modified with WS2 nanosheets, FeVO4/WS2 heterostructures exhibiting 2 to 3-fold increases in photocurrent density and approximately 10-fold improvements in applied bias photon-to-current efficiency (ABPE) compared to pristine FeVO4. These significant enhancements were attributed to the synergistic effects of morphology control, defect engineering, and heterojunction formation, which collectively addressed the intrinsic limitations of conventional FeVO4 photoanodes. This research represents the first report of FeVO4/WS2 heterostructures for PEC applications and provides valuable insights into the design of efficient solar-driven water splitting systems. The successful integration of morphology engineering with heterojunction design offers a promising strategy for developing sustainable hydrogen production technologies, demonstrating the potential of semiconductor heterostructures in advancing renewable energy applications.

    摘要 ii 致謝 xxii 目錄 xxiii 圖目錄 xxvi 表目錄 xxx 第一章 緒論 1 1.1 前言 1 1.2 研究背景 5 1.3 研究動機 7 第二章 文獻回顧 9 2.1 金屬釩酸鹽類(Vanadate,MVO) 9 2.2 釩酸鐵(Iron vanadate,FeVO4) 11 2.3 二維過渡金屬二硫族化物(2D Transition metal dichalcogenides,TMDs) 14 2.4 二硫化鎢(Tungsten disulfide) 16 2.5 異質結構元件(Heterostructure Electrode) 18 第三章 研究方法 21 3.1 實驗材料 21 3.1.1 實驗藥品 21 3.2 實驗流程 23 3.2.1 元件基板清洗流程 23 3.2.2 合成釩酸鐵流程 24 3.2.3 製作二硫化鎢奈米片流程 25 3.2.4 工作電極製備 26 3.2.5 電化學性質量測 28 3.2.6 光電化學水分解 29 3.3 實驗分析方法 31 3.3.1 粉末X-ray繞射分析儀 31 3.3.2 場發射式掃描式電子顯微鏡 32 3.3.3 穿透式電子顯微鏡 33 3.3.4 紫外-可見光光譜儀 34 3.3.5 X光電子能譜儀 35 3.3.6 紫外光電子能譜儀 36 3.3.7 電化學分析儀 37 3.3.8 介達電位&粒徑分析儀 38 第四章 研究結果與討論 40 4.1 釩酸鐵之基本性質分析 40 4.1.1 晶體結構分析 40 4.1.2 表面形貌分析 41 4.1.3 化學價態分析 50 4.1.4 光學性質分析 55 4.1.5 能帶結構分析 57 4.2 二硫化鎢之基本性質 61 4.2.1 晶體結構分析 61 4.2.2 表面形貌分析 62 4.2.3 光學性質分析 64 4.2.4 能帶結構分析 65 4.3 二硫化鎢修飾釩酸鐵之光催化劑(FeVO4/WS2)性質分析 67 4.3.1 晶體結構分析 67 4.3.2 表面形貌分析 68 4.3.3 化學價態分析 71 4.3.4 光學性質分析 75 4.4 FeVO4/WS2光電化學性質與異質接合機制分析 76 4.4.1 Mott-Schottky測試 76 4.4.2 掃描線性伏安法(LSV) 80 4.4.3 電化學交流阻抗圖譜(EIS) 83 4.4.4 光電化學系統之能帶結構及反應機制分析 85 第五章 結論 87 第六章 參考文獻 89

    [1] F. Opoku, K. K. Govender, C. G. C. E. Van Sittert, and P. P. Govender, ‘Role of MoS2 and WS2 monolayers on photocatalytic hydrogen production and the pollutant degradation of monoclinic BiVO4: A first-principles study’, New Journal of Chemistry, vol. 41, no. 20, pp. 11701–11713, 2017, doi: 10.1039/c7nj02340e.
    [2] I. Khan, Y. Gu, and S. Wooh, ‘Shape-Controlled First-Row Transition Metal Vanadates for Electrochemical and Photoelectrochemical Water Splitting’, Jan. 01, 2024, John Wiley and Sons Inc. doi: 10.1002/tcr.202300127.
    [3] A. R. Babaei and M. Rezaei, ‘Development of a highly stable and active non-precious anode electrocatalyst for oxygen evolution reaction in acidic medium based on nickel and cobalt-containing antimony oxide’, Journal of Electroanalytical Chemistry, vol. 935, Apr. 2023, doi: 10.1016/j.jelechem.2023.117319.
    [4] S. Jiang, Y. Liu, H. Qiu, C. Su, and Z. Shao, ‘High Selectivity Electrocatalysts for Oxygen Evolution Reaction and Anti-Chlorine Corrosion Strategies in Seawater Splitting’, Mar. 01, 2022, MDPI. doi: 10.3390/catal12030261.
    [5] B. Ozturk and G. S. Pozan Soylu, ‘Synthesis of surfactant-assisted FeVO4 nanostructure: Characterization and photocatalytic degradation of phenol’, J Mol Catal A Chem, vol. 398, pp. 65–71, May 2015, doi: 10.1016/j.molcata.2014.11.013.
    [6] I. Ahmad et al., ‘A review on versatile metal vanadates photocatalysts for energy conversion and environmental remediation’, Mar. 01, 2024, Elsevier Ltd. doi: 10.1016/j.mtsust.2024.100666.
    [7] M. Yang, G. Ma, H. Yang, Z. Xiaoqiang, W. Yang, and H. Hou, ‘Advanced strategies for promoting the photocatalytic performance of FeVO4 based photocatalysts: A review of recent progress’, Apr. 25, 2023, Elsevier Ltd. doi: 10.1016/j.jallcom.2023.168995.
    [8] Y. Che, G. Feng, W. Guo, J. Xiao, and C. Song, ‘Synthesis of FeVO4 Nanoparticles and Sensing Performance for Ethanol Gas under Different Solution pH’, Crystal Research and Technology, vol. 56, no. 12, Dec. 2021, doi: 10.1002/crat.202100110.
    [9] M. M. Sajid et al., ‘Morphological effects on the photocatalytic performance of FeVO4 nanocomposite’, Nano-Structures and Nano-Objects, vol. 22, Apr. 2020, doi: 10.1016/j.nanoso.2020.100431.
    [10] Y. Zhao et al., ‘Hydrothermal route to metastable phase FeVO4 ultrathin nanosheets with exposed {010} facets: Synthesis, photocatalysis and gas-sensing’, CrystEngComm, vol. 16, no. 2, pp. 270–276, Jan. 2014, doi: 10.1039/c3ce41692e.
    [11] Z. Liu, Q. Lu, M. Wei, and E. Guo, ‘FeVO4 nanobelts: controllable synthesis by electrospinning and visible-light photocatalytic properties’, J Solgel Sci Technol, vol. 82, no. 1, pp. 67–74, Apr. 2017, doi: 10.1007/s10971-016-4271-1.
    [12] V. D. Nithya, R. K. Selvan, C. Sanjeeviraja, D. M. Radheep, and S. Arumugam, ‘Synthesis and characterization of FeVO4 nanoparticles’, Mater Res Bull, vol. 46, no. 10, pp. 1654–1658, Oct. 2011, doi: 10.1016/j.materresbull.2011.06.005.
    [13] M. M. Sajid et al., ‘Photocatalytic performance of ferric vanadate (FeVO4) nanoparticles synthesized by hydrothermal method’, Mater Sci Semicond Process, vol. 129, Jul. 2021, doi: 10.1016/j.mssp.2021.105785.
    [14] M. Zhang, Y. Ma, D. Friedrich, R. Van De Krol, L. H. Wong, and F. F. Abdi, ‘Elucidation of the opto-electronic and photoelectrochemical properties of FeVO4 photoanodes for solar water oxidation’, J Mater Chem A Mater, vol. 6, no. 2, pp. 548–555, 2018, doi: 10.1039/c7ta08923f.
    [15] J. Feng et al., ‘Probing the Performance Limitations in Thin-Film FeVO4 Photoanodes for Solar Water Splitting’, Journal of Physical Chemistry C, vol. 122, no. 18, pp. 9773–9782, May 2018, doi: 10.1021/acs.jpcc.8b01330.
    [16] D. Li et al., ‘Nano-sized FeVO4·1.1H2O and FeVO4 for peroxymonosulfate activation towards enhanced photocatalytic activity’, J Environ Chem Eng, vol. 10, no. 2, Apr. 2022, doi: 10.1016/j.jece.2022.107199.
    [17] R. C. Pawar, H. Khan, H. Charles, and C. S. Lee, ‘Growth of 3D nanowall-like structures of FeVO4 by controlling reaction rate for effective CO2 reduction using UV-visible light’, J Environ Chem Eng, vol. 11, no. 3, Jun. 2023, doi: 10.1016/j.jece.2023.110236.
    [18] W. Wang, Y. Zhang, L. Wang, and Y. Bi, ‘Facile synthesis of Fe3+/Fe2+ self-doped nanoporous FeVO4 photoanodes for efficient solar water splitting’, J Mater Chem A Mater, vol. 5, no. 6, pp. 2478–2482, 2017, doi: 10.1039/c6ta10308a.
    [19] M. Zhang et al., ‘Nanostructured Iron Vanadate Photoanodes with Enhanced Visible Absorption and Charge Separation’, ACS Appl Energy Mater, vol. 5, no. 3, pp. 3409–3416, Mar. 2022, doi: 10.1021/acsaem.1c04004.
    [20] E. Samuel, B. Joshi, M. W. Kim, M. T. Swihart, and S. S. Yoon, ‘Morphology engineering of photoelectrodes for efficient photoelectrochemical water splitting’, Jun. 01, 2020, Elsevier Ltd. doi: 10.1016/j.nanoen.2020.104648.
    [21] Z. Masoumi, M. Tayebi, M. Kolaei, and B. K. Lee, ‘Efficient and stable core-shell α–Fe2O3/WS2/WOx photoanode for oxygen evolution reaction to enhance photoelectrochemical water splitting’, Appl Catal B, vol. 313, Sep. 2022, doi: 10.1016/j.apcatb.2022.121447.
    [22] Q. Liu et al., ‘The novel photo-Fenton-like few-layer MoS2/FeVO4 composite for improved degradation activity under visible light irradiation’, Colloids Surf A Physicochem Eng Asp, vol. 623, Aug. 2021, doi: 10.1016/j.colsurfa.2021.126721.
    [23] M. Shah, U. Abdullah, E. Pervaiz, and M. Ali, ‘2D bifunctional tungsten disulfide-embedded UiO-66 (WS2@UiO-66) as a highly active electrocatalyst for water splitting’, Energy Advances, vol. 3, no. 2, pp. 459–470, Dec. 2023, doi: 10.1039/d3ya00348e.
    [24] G. C. Behera, S. Rani, N. Khatun, J. K. Rath, and S. C. Roy, ‘WS2 nanosheets functionalized Fe2O3 nanorod arrays as a type II heterojunction for photoelectrochemical water splitting’, Applied Surface Science Advances, vol. 11, Oct. 2022, doi: 10.1016/j.apsadv.2022.100293.
    [25] F. M. Pesci et al., ‘MoS2/WS2 Heterojunction for Photoelectrochemical Water Oxidation’, ACS Catal, vol. 7, no. 8, pp. 4990–4998, Aug. 2017, doi: 10.1021/acscatal.7b01517.
    [26] D. Satheesh et al., ‘Exfoliated WS2 nanosheet – Ag3PO4 heterogeneous composite catalyst for effective electrochemical water-splitting’, Mater Lett, vol. 366, Jul. 2024, doi: 10.1016/j.matlet.2024.136478.
    [27] H. M. Tham, S. Japip, and T. S. Chung, ‘WS2 deposition on cross-linked polyacrylonitrile with synergistic transformation to yield organic solvent nanofiltration membranes’, J Memb Sci, vol. 588, Oct. 2019, doi: 10.1016/j.memsci.2019.117219.
    [28] Y. Wang et al., ‘High-performance hole transport layer based on WS2 doped PEDOT:PSS for organic solar cells’, Org Electron, vol. 99, Dec. 2021, doi: 10.1016/j.orgel.2021.106305.
    [29] X. Long et al., ‘Bamboo shoots shaped FeVO4 passivated ZnO nanorods photoanode for improved charge separation/transfer process towards efficient solar water splitting’, Appl Catal B, vol. 257, Nov. 2019, doi: 10.1016/j.apcatb.2019.117813.
    [30] C. F. Shih, T. Zhang, J. Li, and C. Bai, ‘Powering the Future with Liquid Sunshine’, Oct. 17, 2018, Cell Press. doi: 10.1016/j.joule.2018.08.016.
    [31] A. Mehtab et al., ‘Hydrogen Energy as Sustainable Energy Resource for Carbon-Neutrality Realization’, ACS Sustainable Resource Management, vol. 1, no. 4, pp. 604–620, Apr. 2024, doi: 10.1021/acssusresmgt.4c00039.
    [32] A. M. Sadeq et al., ‘Hydrogen energy systems: Technologies, trends, and future prospects’, Aug. 20, 2024, Elsevier B.V. doi: 10.1016/j.scitotenv.2024.173622.
    [33] K. Gomonov, C. T. Permana, and C. T. Handoko, ‘The growing demand for hydrogen: сurrent trends, sectoral analysis, and future projections’, Unconventional Resources, vol. 6, Apr. 2025, doi: 10.1016/j.uncres.2025.100176.
    [34] N. M. Izzudin et al., ‘Unveiling the cutting-edge progress in boosting the photoelectrochemical water-splitting efficiency of BiVO4 photoanode with transition metal-based materials for sustainable hydrogen production’, Journal of Electroanalytical Chemistry, vol. 953, Jan. 2024, doi: 10.1016/j.jelechem.2023.118011.
    [35] I. Energy Agency, ‘World Energy Outlook 2024’, 2024. [Online]. Available: www.iea.org/terms
    [36] A. Fujishima and K. Honda, ‘Electrochemical photocatalysis of water at a semiconductor electrode. , 238, 5358.’, Nature, vol. 238(5358), pp. 37–38, Jul. 1972.
    [37] X. Li, Z. Wang, and L. Wang, ‘Metal–Organic Framework-Based Materials for Solar Water Splitting’, May 01, 2021, John Wiley and Sons Inc. doi: 10.1002/smsc.202000074.
    [38] F. F. Abdi and S. P. Berglund, ‘Recent developments in complex metal oxide photoelectrodes’, Apr. 10, 2017, Institute of Physics Publishing. doi: 10.1088/1361-6463/aa6738.
    [39] S. Han, Z. Zhu, F. Chen, W. Sun, and Y. Tang, ‘Construction of a novel multidimensional 1D/2D heterojunction FeVO4/In2S3 with significantly reinforced charge transport and excellent photocatalytic activity’, Journal of Physics and Chemistry of Solids, vol. 195, Dec. 2024, doi: 10.1016/j.jpcs.2024.112303.
    [40] T. Chellapandi, A. Subramanian, G. Madhumitha, M. Elamathi, and S. Mohana Roopan, ‘Interface engineering of 1D/2D FeVO4/MoS2 hetero-structured nanocomposite with effective interfacial charge transfer: Facile synthesis and antibiotic drug degradation’, Mater Lett, vol. 363, May 2024, doi: 10.1016/j.matlet.2024.136322.
    [41] J. Li et al., ‘Facile synthesis and high activity of novel BiVO 4 /FeVO 4 heterojunction photocatalyst for degradation of metronidazole’, Appl Surf Sci, vol. 351, pp. 270–279, Oct. 2015, doi: 10.1016/j.apsusc.2015.05.134.
    [42] S. Liu et al., ‘Design and fabrication of ternary BiVO4/FeVO4/Cu2O nanorod array photoelectrode for boosting photoelectrochemical water oxidation’, Ceram Int, vol. 48, no. 6, pp. 7613–7621, Mar. 2022, doi: 10.1016/j.ceramint.2021.11.305.
    [43] Y. Li et al., ‘FeVO4 nanowires for efficient photocatalytic CO2 reduction’, Catal Sci Technol, Apr. 2022, doi: 10.1039/d2cy00324d.
    [44] M. Mohl et al., ‘2D Tungsten Chalcogenides: Synthesis, Properties and Applications’, Jul. 01, 2020, Wiley-VCH Verlag. doi: 10.1002/admi.202000002.
    [45] H. M. Tham, S. Japip, and T. S. Chung, ‘WS2 deposition on cross-linked polyacrylonitrile with synergistic transformation to yield organic solvent nanofiltration membranes’, J Memb Sci, vol. 588, Oct. 2019, doi: 10.1016/j.memsci.2019.117219.
    [46] Z. Li et al., ‘Understanding the Photoluminescence Quenching of Liquid Exfoliated WS2 Monolayers’, Journal of Physical Chemistry C, vol. 126, no. 51, pp. 21681–21688, Dec. 2022, doi: 10.1021/acs.jpcc.2c05284.
    [47] S. Ott, M. Lakmann, and C. Backes, ‘Impact of pretreatment of the bulk starting material on the efficiency of liquid phase exfoliation of WS2’, Nanomaterials, vol. 11, no. 5, May 2021, doi: 10.3390/nano11051072.
    [48] A. Ghorai, A. Midya, R. Maiti, and S. K. Ray, ‘Exfoliation of WS2 in the semiconducting phase using a group of lithium halides: A new method of Li intercalation’, Dalton Transactions, vol. 45, no. 38, pp. 14979–14987, 2016, doi: 10.1039/c6dt02823c.
    [49] S. K. Biswas and J. O. Baeg, ‘Enhanced photoactivity of visible light responsive W incorporated FeVO 4 photoanode for solar water splitting’, Int J Hydrogen Energy, vol. 38, no. 34, pp. 14451–14457, Nov. 2013, doi: 10.1016/j.ijhydene.2013.09.064.
    [50] A. K. Kakarla, D. Narsimulu, H. R. Patnam, R. Shanthappa, and J. S. Yu, ‘Structural and electrochemical properties of mesoporous FeVO4 as a negative electrode for lithium-ion battery’, Int J Energy Res, vol. 46, no. 10, pp. 13590–13601, Aug. 2022, doi: 10.1002/er.8080.
    [51] Y. Tang et al., ‘Catalytic degradation of oxytetracycline via FeVO4 nanorods activating PMS and the insights into the performance and mechanism’, J Environ Chem Eng, vol. 9, no. 5, Oct. 2021, doi: 10.1016/j.jece.2021.105864.
    [52] T. Van Nguyen, K. A. Huynh, Q. Van Le, S. H. Ahn, and S. Y. Kim, ‘Facile Synthesis of WS2/WO3Materials in a Batch Reactor for the Hydrogen Evolution Reaction’, Int J Energy Res, vol. 2024, 2024, doi: 10.1155/2024/4878549.

    無法下載圖示 校內:2030-07-15公開
    校外:2030-07-15公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE