| 研究生: |
莊豐任 Juang, Feng-Renn |
|---|---|
| 論文名稱: |
複層孔隙率多孔矽基板上成長單晶碳化矽應用於光感測器之研究 Characterization and Preparation of Single-Crystalline Silicon Carbide Thin Film on Porous-Si Substrates with Multi-Porosity for Photodetecting Applications |
| 指導教授: |
張順志
Chang, Soon-Jyh 方炎坤 Fang, Yean-Kuen |
| 學位類別: |
碩士 Master |
| 系所名稱: |
電機資訊學院 - 電機工程學系 Department of Electrical Engineering |
| 論文出版年: | 2008 |
| 畢業學年度: | 96 |
| 語文別: | 中文 |
| 論文頁數: | 84 |
| 中文關鍵詞: | 複層孔隙率 、多孔矽 、光感測 、碳化矽 |
| 外文關鍵詞: | multi-porosity, porous silicon, photodetecting, silicon carbide |
| 相關次數: | 點閱:104 下載:13 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本論文中描述於N型(111) 矽基板上調變不同蝕刻參數形成複層孔隙率(multi-porosity)多孔矽基板,利用多孔矽結構來增加光線吸收面積與偏移吸收峰值等特性,發展光感測元件。其中多孔矽層是以電化學陽極化蝕刻法(electrochemical anodization method) 製作而成,於其上再以快速升溫化學氣相沉積系統(RTCVD) 成長單晶碳化矽薄膜。利用碳化矽/多孔矽結構製作的垂直式PN接面二極體其主要吸收層在於多孔矽層,具有0.41A/W之響應度、60.22%之量子效率,常溫6.5mW/cm2螢光燈照射下其光暗電流增益值為393.83,與傳統碳化矽/單晶矽結構相較提升近4倍。此外,碳化矽MSM(metal-semiconductor-metal)結構光感測元件則因多孔矽層的高電阻值絕緣特性,使主要吸收層落在碳化矽薄膜,具有0.20A/W之響應度,量子效率為44.62%。實驗結果驗證成長於複層孔隙率多孔矽基板上的碳化矽/多孔矽元件,具有較佳的光感測特性與靈敏度,因此更適合應用於元件的製作與發展。
In this thesis, we used various etching conditions to develop PS (porous-Si) substrates with multi-porosity. The PS structure can increase photo-absorbing area, and shift the peak of the main absorbing wavelength, thus improving the flexibility for designing a photo-detecting device. The PS layers were formed on the silicon substrates pre-etched using the electrochemical anodization method. Then deposited theβ-SiC film on the top of the PS layer by a RTCVD system to form vertical type PN junction and metal-semiconductor-metal (MSM) photodiodes . For the PN junction diode, the main absorbing region is located on the PS layers. The diode exhibits a responsivity of 0.41A/W and 60.22% quantum efficiency. Under room temperature, and irradiation of 6.5mW/cm2 fluorescent lamp, the diode has a photo to dark current ratio of 393.83.Which is nearly 4 times compared to the counterpart with SiC/c-Si structure. While in the MSM structure photodiode, due to the high resistance of the PS layers, the SiC film becomes the main absorbing layers, and has a responsivity of 0.20A/W and 44.62% quantum efficiency. The results indicate the SiC films deposited on the PS with multi-porosity, have better properties for developing high performance photo-detecting device.
[1] G. L. Harris, Properties of Silicon Carbide. an INSPEC publication, Institution of Electrical Engineers, London, United Kingdom, 1995.
[2] H. Morkoc, S. Strite, G. B. Gao, M. E. Lin, B. Sverdlov, and M. Burns, “Large-band-gap SiC, III-V nitride, and II-VI ZnSe-based semiconductor device technologies,” J. Appl. Phys., vol. 76, no. 3, pp. 1363-1398, 1994.
[3] L. A. Balagurov, S. C. Bayliss, D. G. Yarkin, S. Ya. Andrushin, V. S. Kasatochkin, A. F. Orlov, and E. A. Petrova, “Low noise photosensitive device structures based on porous silicon,” Solid-State Electronics, vol. 47, pp. 65-60, 2003.
[4] J. P. Zheng, K. L. Jiao, W. P. Shen, W. A. Anderson, and H. S. Kwok, “Highly sensitive photodetector using porous silicon,” Appl. Phys. Lett., vol. 61, no. 4, pp. 459-461, 1992.
[5] Suresh Kumar Dhungel, Jinsu Yoo, Kyunghae Kim, Somnath Ghosh, Sungwook Jung, and Junsin Yi, “Study of electrical properties of oxidized porous silicon for back surface passivation of silicon solar cells,” Renewable Energy, vol. 33, pp. 282-285, 2008.
[6] P. Steiner, F. Kozlowski, and W. Lang, “Blue and Green Electroluminescence from a Porous Silicon Device,” IEEE ELECTRON DEVICE LETTERS, vol. 14, no. 7, pp. 317-319, 1993.
[7] R. J. Martin-Palma, J. M. Martinez-Duart , L. Li, and R. A. Levy, “Electrical behavior of double-sided metal/porous silicon structures for optoelectronic devices,” Materials Science and Engineering C, vol. 19, pp. 359-362, 2002.
[8] R. L. Smith, and S. D. Collins, “Porous silicon formation mechanisms,” J. Appl. Phys., vol. 71, no. 8, pp. R1-R22, 1992.
[9] A. G. Cullis, L. T. Canham, and P. D. J. Calcott, “The structural and luminescence properties of porous silicon,” J. Appl. Phys., vol. 82, no. 3, pp. 909-965, 1997.
[10] L. T. Canham, T. I. Cox, A. Loni, A. J. Simons, “Progress towards silicon optoelectronics using porous silicon technology,” Applied Surface Science, vol. 102, pp. 436-441, 1996.
[11] E. V. Astrova, V. B. Voronkov, A. D. Remenyuk, V. B. Shuman, and V. A. Tolmachev, “Variation of the parameters and composition of thin films of porous silicon as a result of oxidation: ellipsometric studies,” Semiconductors, vol. 33, no. 10, pp. 1149-1155, 1999.
[12] L. Pavesi, and V. Mulloni, “All porous silicon microcavities: growth and physics,” Journal of Luminescence, vol. 80, pp. 43-52, 1999.
[13] A. J. Steckl, and J. P. Li, “Epitaxial Growth of β-Sic on Si by RTCVD with C3H8 and SiH4,” IEEE Trans. Electron Devices, vol. 39, no. 1, pp. 64-74, 1992.
[14] A. Uhlir, Jr., “Electrolytic Shaping of Germanium and Silicon,” Bell System Tech. J., vol. 35, pp. 333-347, 1956.
[15] G. C. John, and V. A. Singh, “Diffusion-induced nucleation model for the formation of porous silicon,” Physical Review B, vol. 52, no. 15, pp. 125-131, 1995.
[16] K. Imai, and S. Nakajima, “Full isolation technology by porous oxidized silicon and its application to LSIs,” International Electron Devices Meeting, vol. 27, pp. 376-379, 1981.
[17] L. T. Canham, “Silicon quantum wire array fabrication by electrochemical and chemical dissolution of wafers,” Appl. Phys. Lett., vol. 57, no. 10, pp. 1046-1048, 1990.
[18] V. Lehmann, and U. Gosele, “Porous silicon formation: A quantum wire effect,” Appl. Phys. Lett., vol. 58, no. 8, pp. 856-858, 1991.
[19] M. I. J. Beale, N. G. Chew, M. J. Uren, A. G. Cullis, and J. D. Benjamin, “Microstructure and formation mechanism of porous silicon,” Appl. Phys. Lett., vol. 46, no. 1, pp. 86-88, 1985.
[20] M. I. J. Beale, J. D. Benjamin, M. J. Uren, N. G. Chew and A. G. Cullis, “The formation of porous silicon by chemical stain etches,” J. Cryst. Growth, vol. 75, no. 3, pp. 408-414, 1986.
[21] I. M. Young, M. I. J. Beale, and J. D. Benjamin, “X-ray double crystal diffraction study of porous silicon,” Appl. Phys. Lett., vol. 46, no. 12, pp. 1133-1135, 1985.
[22] A. Halimaoui, C. Oules, G. Bomchil, A. Bsiesy, F. Gaspard, R. Herino, M. Ligeon, and F. Muller, “Electroluminescence in the visible range during anodic oxidation of porous silicon films,” Appl. Phys. Lett., vol. 59, no. 15, pp. 304-306, 1991.
[23] J. B. Casady, and R. W. Johnson, “Status of silicon carbide (SiC) as a wide-bandgap semiconductor for high-temperature applications: A review,” Solid-State Electronics, vol. 39, no. 10, pp. 1409-1422, 1996.
[24] T. L. Lin, L. Sadwick, K. L. Wang, Y. C. Kao, R. Hull, C. W. Nieh, D. N. Jamieson, and J. K. Liu, “Growth and characterization of molecular beam epitaxial GaAs layers on porous silicon,” Appl. Phys. Lett., vol. 51, no. 11, pp. 814-816, 1987.
[25] Z. Liu, B. Q. Zong, Z. Lin, “Diamond growth on porous silicon by hot-filament chemical vapor deposition,” Thin Solid Films, vol. 254, pp. 3-6, 1995.
[26] S. M. Sze, Semiconductor Devices: Physics and Technology, 2nd Edition. John Wiley & Sons, Inc., New York, United States of America, 2002.
[27] P. R. Boyce, Human Factors in Lighting. Applied Science Publishers, London, United Kingdom, 1981.