簡易檢索 / 詳目顯示

研究生: 王新皓
Wang, Hsin-Hao
論文名稱: 結合次取樣架構與延遲鎖定迴路之3.5GHz低參考突波鎖相迴路設計
Design of a 3.5GHz Low-spur Phase-Locked Loop Combining Sub-Sampling Architecture and Delay-Locked Loop
指導教授: 黃尊禧
Huang, Tzuen-Hsi
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 電機工程學系
Department of Electrical Engineering
論文出版年: 2026
畢業學年度: 114
語文別: 中文
論文頁數: 111
中文關鍵詞: 次取樣鎖相迴路低雜訊延遲鎖定迴路鎖頻迴路參考突波
外文關鍵詞: sub-sampling PLL, Low noise, Delay-Locked Loop, Frequency-Locked Loop, Reference spur
相關次數: 點閱:6下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 隨著第五代行動通訊(5G)技術的快速發展,穩定且低雜訊的頻率合成器成為無線高速系統中不可或缺的核心元件。傳統整數型鎖相迴路雖然能提供穩定的輸出,但其相位雜訊表現受限,難以滿足高速系統對訊號品質的嚴格要求。本論文採用次取樣鎖相迴路架構,以改善頻寬內相位雜訊。此架構最大的不同在於移除回授路徑上的除頻器,不僅消除除頻器本身的雜訊外,亦使相位偵測器與充電泵的雜訊傳遞至輸出端時不再被放大除頻器除數的平方倍,大幅改善頻寬內的相位雜訊。
    然而,次取樣架構在運作過程中會引入二進制頻率偏移調變效應、電荷分享效應與電荷注入效應,導致參考突波惡化。為抑制上述效應,本論文在次取樣鎖相迴路中引入延遲鎖定迴路,以調整參考訊號的上升緣,使其對齊壓控振盪器之零交越點,進而有效降低電荷分享效應。除此之外,電路中亦加入緩衝器與虛擬取樣器,以進一步抑制二進制頻率偏移調變效應與電荷注入效應對壓控振盪器的干擾。
    本設計採用TSMC 0.18µm CMOS製程,參考頻率為54.6875 MHz,輸出頻率為3.5 GHz。量測結果顯示,本設計可成功鎖定於目標頻率,並在啟動DLL後,參考突波由-55.55 dBc改善至-70.09 dBc,提升約14.5 dB。此外,在頻率偏移量為1MHz時的相位雜訊表現為-101.226 dBc/Hz,整體功率消耗為10.54 mW。

    With the rapid advancement of fifth-generation mobile communication (5G) technology, stable and low-noise frequency synthesizers have become indispensable core components in high-speed wireless systems. Although conventional integer-N phase-locked loops can provide stable output frequency, their phase-noise performance is often insufficient to meet the stringent signal-quality requirements of modern high-speed communication systems. In this work, a sub-sampling phase-locked loop architecture is adopted to improve in-band phase noise. The key distinction of this architecture lies in the removal of the feedback divider, which not only eliminates the divider’s intrinsic noise but also prevents the noise generated by the phase detector and charge pump from being amplified by the square of the division ratio, thereby significantly enhancing the in-band phase-noise performance.
    However, the sub-sampling architecture inherently introduces binary frequency-shift keying (BFSK) effects, charge-sharing effects, and charge-injection disturbances, all of which lead to reference-spur degradation. To suppress these effects, this work incorporates a delay-locked loop into the SSPLL to finely adjust the rising edge of the reference signal such that it aligns with the zero-crossing point of the voltage-controlled oscillator, effectively reducing charge-sharing interference. In addition, buffer stages and a virtual sampler are implemented to further mitigate BFSK and charge-injection effects on the VCO.
    The proposed design is implemented in a TSMC 0.18-µm CMOS process, with a reference frequency of 54.6875 MHz and an output frequency of 3.5 GHz. Measurement results demonstrate that the loop successfully locks to the target frequency, and after enabling the DLL, the reference spur is improved from −55.55 dBc to −70.09 dBc, achieving an enhancement of approximately 14.5 dB. Furthermore, the measured phase noise is −101.226 dBc/Hz at a 1-MHz offset, and the total power consumption is 10.54 mW.

    第一章 緒論 1 1.1 研究動機 1 1.2 文獻回顧 2 1.3 論文架構 4 第二章 次取樣鎖相迴路 5 2.1 鎖相迴路簡介 5 2.1.1 整數型鎖相迴路運作原理 6 2.1.2 整數型鎖相迴路系統分析 7 2.1.3 整數型鎖相迴路雜訊分析 16 2.1.4 整數型鎖相迴路突波分析 19 2.2 次取樣鎖相迴路簡介 22 2.2.1 次取樣鎖相迴路運作原理 23 2.2.2 次取樣鎖相迴路系統分析 27 2.2.3 次取樣鎖相迴路雜訊分析 31 2.2.4 次取樣鎖相迴路與整數型鎖相迴路雜訊比較 33 2.2.5 次取樣鎖相迴路突波分析 35 第三章 3.5 GHz次取樣鎖相迴路 42 3.1 電路架構 42 3.1.1 振盪器簡介 43 3.1.2 延遲鎖定迴路 48 3.2 次取樣迴路 50 3.2.1 次取樣相位偵測器 51 3.2.2 脈波產生器 53 3.2.3 次取樣迴路充電泵 55 3.2.4 壓控振盪器 56 3.2.5 迴路濾波器 60 3.3 頻率鎖定迴路 61 3.3.1 擁有死區之相位頻率偵測器 61 3.3.2 頻率鎖定迴路充電泵 64 3.3.3 除頻器 65 3.4 延遲鎖定迴路 67 3.4.1 邊緣控制器 68 3.4.2 迴路濾波器 70 3.5 模擬結果 70 第四章 量測結果 74 4.1 量測環境設置 74 4.2 量測結果與討論 77 第五章 結論 83 5.1 總結 83 5.2 未來展望 85 參考文獻 86

    [1] ITU (2015), IMT vision- Framework and overall objectives of the future development of IMT for 2020 and beyond. [Online] Available: https://www.itu.int/dms_pubrec/itur/rec/m/R-REC-M.2083-0-201509-I!!PDF-E.pdf.
    [2] B. Razavi, Design of Analog CMOS Integrated Circuits. 2000
    [3] X. Gao, E. A. M. Klumperink, M. Bohsali and B. Nauta, "A Low Noise Sub-Sampling PLL in Which Divider Noise is Eliminated and PD/CP Noise is Not Multiplied by N2 ," IEEE Journal of Solid-State Circuits, vol. 44, no. 12, pp. 3253-3263, Dec. 2009
    [4] J. Sharma and H. Krishnaswamy, "A 2.4-GHz Reference-Sampling Phase-Locked Loop That Simultaneously Achieves Low-Noise and Low-Spur Performance," IEEE Journal of Solid-State Circuits, vol. 54, no. 5, pp. 1407-1424, May 2019
    [5] C.Barret, ’’Fractional/Integer-N PLL Basics.pdf.’’ 1999.
    [6] B. Razavi and R. Behzad, RF microelectronics. Prentice hall New York, 2012
    [7] N. Kamal, "Reference Spurs in an Integer-N Phase-Locked Loop: Analysis, 75 Modelling and Design," 2013.
    [8] X. Gao, E. A. M. Klumperink, G. Socci, M. Bohsali and B. Nauta, "Spur Reduction Techniques for Phase-Locked Loops Exploiting A Sub-Sampling Phase Detector," IEEE Journal of Solid-State Circuits, vol. 45, no. 9, pp. 1809-1821, Sept. 2010
    [9] H. Xu, S. Ji, Y. Wang, X. Lin, H. Min and N. Yan, "Analysis and Design of a Sub-Sampling PLL of Low Phase Noise and Low Reference Spur," IEEE Transactions on Circuits and Systems I: Regular Papers, vol. 71, no. 8, pp. 3597-3607, Aug. 2024
    [10] T. -S. Yang, H. -Y. Hsieh and L. -H. Lu, "A 2.4-GHz Ring-VCO-Based Sub-Sampling PLL With a −70-dBc Reference Spur by Adopting a Capacitor-Multiplier-Based Sub-Sampling DLL," IEEE Transactions on Circuits and Systems I: Regular Papers, vol. 70, no. 9, pp. 3545-3556, Sept. 2023
    [11] F.Gardner, "Charge-Pump Phase-Lock Loops," IEEE Transactions on Communications, vol. 28, no. 11, pp. 1849-1858, November 1980
    [12] 劉深淵(作者)、楊清淵(譯者),鎖相迴路,滄海書局,2006
    [13] N. Kamal, S. Al-Sarawi and D. Abbott, "An accurate analytical spur model for an integer-N phase-locked loop," 2012 4th International Conference on Intelligent and Advanced Systems (ICIAS2012), Kuala Lumpur, Malaysia, 2012
    [14] J. A. Crawford, Frequency Synthesizer Design Handbook, Boston, MA: Artech House, 1994
    [15] X. Gao, E. Klumperink and B. Nauta, "Sub-sampling PLL techniques," 2015 IEEE Custom Integrated Circuits Conference (CICC), San Jose, CA, USA, 2015
    [16] H. -G. Ko, W. Bae, G. -S. Jeong and D. -K. Jeong, "Reference Spur Reduction Techniques for a Phase-Locked Loop," IEEE Access, vol. 7, pp. 38035-38043, 2019
    [17] Z. Yang, Y. Chen, S. Yang, P. -I. Mak and R. P. Martins, "16.8 A 25.4-to-29.5GHz 10.2mW Isolated Sub-Sampling PLL Achieving -252.9dB Jitter-Power FoM and -63dBc Reference Spur," 2019 IEEE International Solid-State Circuits Conference - (ISSCC), San Francisco, CA, USA, 2019
    [18] K. J. Wang, A. Swaminathan and I. Galton, "Spurious Tone Suppression Techniques Applied to a Wide-Bandwidth 2.4 GHz Fractional-N PLL," IEEE Journal of Solid-State Circuits, vol. 43, no. 12, pp. 2787-2797, Dec. 2008
    [19] Build fast 5G LTE Networks: https://www.5g-networks.net/5g-band-n78-3500mhz/
    [20] T. Xu, J. Chen, L. Du, C. Song, Q. J. Gu and Z. Xu, "An Inverted Complementary Cross-Coupled VCO to Reduce Phase Noise Sensitivity to KVCO," IEEE Microwave and Wireless Technology Letters, vol. 33, no. 5, pp. 571-574, May 2023
    [21] K. K. Hung, P. K. Ko, C. Hu and Y. C. Cheng, "A unified model for the flicker noise in metal-oxide-semiconductor field-effect transistors," IEEE Transactions on Electron Devices, vol. 37, no. 3, pp. 654-665, March 1990
    [22] A. Hajimiri and T. H. Lee, "A general theory of phase noise in electrical oscillators," IEEE Journal of Solid-State Circuits, vol. 33, no. 2, pp. 179-194, Feb. 1998
    [23] D. B. Leeson, "A simple model of feedback oscillator noise spectrum," in Proceedings of the IEEE, vol. 54, no. 2, pp. 329-330, Feb. 1966
    [24] Z. Zong, G. Mangraviti and P. Wambacq, "Low 1/f3 Noise Corner LC-VCO Design Using Flicker Noise Filtering Technique in 22nm FD-SOI," IEEE Transactions on Circuits and Systems I: Regular Papers, vol. 67, no. 5, pp. 1469-1480, May 2020
    [25] B. Razavi, "The Delay-Locked Loop [A Circuit for All Seasons]," IEEE Solid-State Circuits Magazine, vol. 10, no. 3, pp. 9-15, Summer 2018
    [26] M. . -J. E. Lee et al., "Jitter transfer characteristics of delay-locked loops - theories and design techniques," IEEE Journal of Solid-State Circuits, vol. 38, no. 4, pp. 614-621, April 2003
    [27] P. Mirajkar, J. Chand, S. Aniruddhan and S. Theertham, "Low Phase Noise Ku-Band VCO With Optimal Switched-Capacitor Bank Design," IEEE Transactions on Very Large Scale Integration (VLSI) Systems, vol. 26, no. 3, pp. 589-593, March 2018
    [28] L. Xian, L. Wenyuan and W. Zhigong, "A wide tuning range LC-VCO using switched capacitor array technique," 2010 International Symposium on Signals, Systems and Electronics, Nanjing, China, 2010
    [29] T. -H. Lin, C. -L. Ti and Y. -H. Liu, "Dynamic Current-Matching Charge Pump and Gated-Offset Linearization Technique for Delta-Sigma Fractional- N PLLs," IEEE Transactions on Circuits and Systems I: Regular Papers, vol. 56, no. 5, pp. 877-885, May 2009
    [30] N. Hemapradhap and J. Ajayan, "High speed low-power true single-phase clock divide-by-16/17 dual-modulus prescaler using 130nm CMOS process with a Vdd of 1.2V," 2016 International Conference on Circuit, Power and Computing Technologies (ICCPCT), Nagercoil, India, 2016
    [31] X. Gao, E. Klumperink, G. Socci, M. Bohsali and B. Nauta, "A 2.2GHz sub-sampling PLL with 0.16psrms jitter and −125dBc/Hz in-band phase noise at 700µW loop-components power," 2010 Symposium on VLSI Circuits, Honolulu, HI, USA, 2010
    [32] M. Osada, Z. Xu and T. Iizuka, "A 3.2-to-3.8 GHz Harmonic-Mixer-Based Dual-Feedback Fractional-N PLL Achieving -65 dBc In-Band Fractional Spur," IEEE Solid-State Circuits Letters, vol. 3, pp. 534-537, 2020
    [33] D. -G. Lee and P. P. Mercier, "A Sub-mW 2.4-GHz Active-Mixer-Adopted Sub-Sampling PLL Achieving an FoM of −256 dB," IEEE Journal of Solid-State Circuits, vol. 55, no. 6, pp. 1542-1552, June 2020
    [34] D. Liao, F. F. Dai, B. Nauta and E. A. M. Klumperink, "A 2.4-GHz 16-Phase Sub-Sampling Fractional-N PLL With Robust Soft Loop Switching," IEEE Journal of Solid-State Circuits, vol. 53, no. 3, pp. 715-727, March 2018
    [35] Y. C. Qian, Y. Y. Chao and S. I. Liu, "A Low-Jitter Sub-Sampling PLL With a Sub-Sampling DLL," IEEE Transactions on Circuits and Systems II: Express Briefs, vol. 69, no. 2, pp. 269-273, Feb. 2022
    [36] W. Bae, "Benchmark Figure of Merit Extensions for Low Jitter Phase Locked Loops Inspired by New PLL Architectures," IEEE Access, vol. 10, pp. 80680-80694, 2022
    [37] Z. Yang, Y. Chen, J. Yuan, P. -I. Mak and R. P. Martins, "A 3.3-GHz Integer N-Type-II Sub-Sampling PLL Using a BFSK-Suppressed Push–Pull SS-PD and a Fast-Locking FLL Achieving −82.2-dBc REF Spur and −255-dB FOM," IEEE Transactions on Very Large Scale Integration (VLSI) Systems, vol. 30, no. 2, pp. 238-242, Feb. 2022
    [38] A. Sharkia, S. Mirabbasi and S. Shekhar, "A Type-I Sub-Sampling PLL With a 100×100μm2 Footprint and −255-dB FOM," IEEE Journal of Solid-State Circuits, vol. 53, no. 12, pp. 3553-3564, Dec. 2018
    [39] Y. Choi et al., "A 4-GHz Ring-Oscillator-Based Digital Sub-Sampling PLL With Energy-Efficient Dual-Domain Phase Detector," IEEE Transactions on Circuits and Systems I: Regular Papers, vol. 70, no. 7, pp. 2734-2743, July 2023
    [40] Z. Yang, Y. Chen, P. -I. Mak and R. P. Martins, "A 0.003-mm2 440fsRMS-Jitter and −64dBc-Reference-Spur Ring-VCO-Based Type-I PLL Using a Current-Reuse Sampling Phase Detector in 28-nm CMOS," IEEE Transactions on Circuits and Systems I: Regular Papers, vol. 68, no. 6, pp. 2307-2316, June 2021
    [41] X. Gao, E. A. M. Klumperink, P. F. J. Geraedts and B. Nauta, "Jitter Analysis and a Benchmarking Figure-of-Merit for Phase-Locked Loops," IEEE Transactions on Circuits and Systems II: Express Briefs, vol. 56, no. 2, pp. 117-121, Feb. 2009
    [42] B. Razavi, "The Design of An LDO Regulator [The Analog Mind]," IEEE Solid-State Circuits Magazine, vol. 14, no. 2, pp. 7-17, Spring 2022
    [43] S. Ji et al., "A 2.4-GHz Sub-Sampling PLL With an Adaptive and No Power Contribution FLL Achieving 103.58 fs rms Jitter and −257.8 dB FOM," IEEE Microwave and Wireless Components Letters, vol. 32, no. 5, pp. 403-405, May 2022
    [44] Z. Yang, Y. Chen, P. -I. Mak and R. P. Martins, "A Calibration-Free, Reference-Buffer-Free, Type-I Narrow-Pulse-Sampling PLL With −78.7-dBc REF Spur, −128.1-dBc/Hz Absolute In-Band PN and −254-dB FOM," IEEE Solid-State Circuits Letters, vol. 3, pp. 494-497, 2020
    [45] J. Jiang, T. Yan, D. Zhou, A. I. Karsilayan and J. Silva-Martinez, "A 2.3-3.9 GHz Fractional-N Frequency Synthesizer with Charge Pump and TDC Calibration for Reduced Reference and Fractional Spurs," 2021 IEEE Radio Frequency Integrated Circuits Symposium (RFIC), Atlanta, GA, USA, 2021
    [46] Y. Zhang et al., "A Fractional- N PLL With Space–Time Averaging for Quantization Noise Reduction," IEEE Journal of Solid-State Circuits, vol. 55, no. 3, pp. 602-614, March 2020

    QR CODE