簡易檢索 / 詳目顯示

研究生: 陳彥臻
Chen, Yen-Chen
論文名稱: 以電化學蝕刻方法製備多孔性氧化鎢薄膜之研究
Study of Porous WO3 Thin Film Using Electrochemical Etching Method
指導教授: 方冠榮
Fung, Kuan-Zong
學位類別: 碩士
Master
系所名稱: 工學院 - 材料科學及工程學系
Department of Materials Science and Engineering
論文出版年: 2010
畢業學年度: 98
語文別: 中文
論文頁數: 73
中文關鍵詞: 電致色變氧化鎢電化學蝕刻氟化鈉電解質
外文關鍵詞: Electrochromic, Tungsten oxide, Electrochemical etching, NaF electrolyte
相關次數: 點閱:78下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 近年來,由於能源危機來臨,使環保意識開始抬頭,而開始尋找替代能源,以及降低能源之消耗。電致色變元件為一降低能源消耗方案之一,降低日光直射進入住宅內,而使室內溫度上升,在夏日也降低冷氣做功之效率。
    本研究以經熱處理後,製備多孔性氧化鎢做為探討,利用含氟之化合物NaF,為溶於水之化合物,並以不同濃度以及經電化學蝕刻不同時間後,觀察其表面所產生之型態之影響,而反應皆處於穩定電壓源下且溫度為5℃之水槽中,使其所反應之廢熱藉由冰水帶走,降低試片因熱量累積而導致損毀。
    實驗結果顯示,其未經過任何電化學蝕刻之氧化鎢,其著/褪色之對比度為67.19%,而經過電化學蝕刻之氧化鎢,其著/褪色對比度下降至54.38%,而其光學密度以未經電化學蝕刻反應之效果較佳為0.92,而多孔性之氧化鎢則為0.38,其所造成之效果,其為蝕刻之多孔性氧化鎢其薄膜厚度較未經過電化學蝕刻之氧化鎢薄膜其厚度降下。
    而經過循環伏安實驗之後,其元件為多孔性之結構其穩定性較沒經過蝕刻反應氧化鎢較高,而其數據顯示其經過多次反應後,元件之工作情形較為穩定,而無經過電化學蝕刻反應之氧化鎢,可由數據顯示其多為不可逆反應,將導致元件之壽命降低。而藉由循環伏安實驗
    可以計算出其多孔性氧化鎢以及緻密氧化鎢電流密度分別為(65.28 C/cm2)/(6.15C/cm2)。
    電致色變元件之效率,可以藉由電流密度以及光學密度可以計算出電致色變之效率值,緻密氧化鎢與多孔性氧化鎢之電致變色效率(Color efficiency=E.C)為(15 cm2C-1)/(61.38 cm2C-1) 。與響應時間之量測,測量元件在一百秒內,其元件著色與褪色之關係,其顯示穿透率之對比以緻密性氧化鎢較佳,而在響應時間之測試中多孔性氧化鎢將鋰離子擴散至晶格中速率較緻密氧化鎢快,可將速率決定步驟提前發生,進而使反應效率提升。

    In recent years, the crisis of energy was happened. Environment consciousness began to rise and looking for alternative sources of energy also reduce energy consumption. One of option is Electrochromic Device. Decreasing the light illuminate into the building make the air-condition increasing the efficiency.
    The porous WO3 was heat treatment at 450℃ and electrochemical etching in NaF solution.NaF was a kind of water-soluble electrolyte. The parameter in this research adjusted the concentration and reactive time. The electrochemical etching reaction worked in 5℃ at an constant voltage for decreasing the heat accumulation which makes the device damage. The electrolyte device was LiClO4+PC.
    The experiment result shows WO3 after heat treatment at 450℃.The optical properties about transmittance ratio of the device was 67.19%.The WO3 after electrochemical etching became porous WO3 and transmittance ratio of the device was 54.38%.The Optical Density of WO3 without electrochemical etching was better than WO3 which after electrochemical etching and optical density from 0.92 to 0.38.The reason of this Phenomenon was WO3 after electrochemical etching the thickness of thin film became decrease.
    In voltammograms test of WO3 which after electrochemical etching had porous structure became more stability. The result shows WO3 without effect of structure that device had irreversible reaction happened. It would decrease the life of device.In voltammograms test also could calculate the current of non electrochemical etching WO3 and electrochemical etching WO3 were (65.28mA)/( 6.15mA).
    The color efficiency of Electrochromic device could calculate by current density and optical density.The color efficiency of WO3 without electrochemical etching and WO3 with electrochemical were (15cm2C-1) /(61.38cm2C-1).The responsive time test show a device supply an constant voltage in 100 seconds observe the device transformation. The transmittance of WO3 without any action was better than porous WO3. The device of porous WO3 could be fast to reach rate-determining-step.

    總目錄 摘要..............................I Abstract.............................III 誌謝............................IV 總目錄..........................V 圖目錄..........................VII 表目錄..........................XI 第一章 緒論........................1 1-1前言.........................1 1-2研究目的...................... 5 第二章 文獻回顧.....................6 2-1濺鍍原理......................,6 2-2電化學蝕刻原理....................9 2-3電致變色元件...................16 2-4電致色變材料...................18 第三章 實驗方法與步驟................................26 3-1實驗流程............................................26 3-2真空濺鍍設備.................................27 3-3實驗材料...........................................29 3-4電化學蝕刻設備.........................30 3-5恆電位儀設備....................32 3-6可見光光譜分析....................32 3-7表面型態分析.....................32 3-8元件封裝測試.................33 第四章 實驗結果...................................34 4-1 NaF濃度及與氧化鎢薄膜反應時間對氧化鎢薄膜性質之影響.................34 4-1-1 電解蝕刻液NaF濃度之影響..............34 4-1-2 氧化鎢薄膜與電解蝕刻液NaF反應時間之影響...36 4-1-3 孔洞之生成機制.................43 4-2 孔洞結構對電致色變性質之影響.............51 4-2-1孔洞結構對於元件穿透率之影響.........51 4-2-2孔洞結構對電致色變原件穩定度之影響.........58 4-2-3孔洞結構對電致色變原件響應時間之影響........64 第五章 結論.......................69 參考文獻..................71

    參考文獻
    1 .F.Jiang *, T.Zheng, Y.Yang2., Solar Energy Materials and Solar Cells, 60 (2000) 201-262.
    2. A.E. Aliev*, H.W. Shin, Solid State Ionics 154– 155 (2002) 425– 431.
    3.邱顯堂“變色性材料”,化工,第38卷,第2期,(1991)74.
    4.楊明長,“電致色變系統簡介”,化工,第40卷,第2期,(1993)
    5.焦小浣, 胡文旭, 陳玲, 光窗透明材料的實驗研究, 太陽能學報, Vol18, No 4, p.365-370 (1997)
    6. C.G. Granqvist, E. Avendano, A. Azens, Thin Solid Films, Vol.442, p.201-211 (2003).
    7. http://www.glassresource.com.sneapeek/sample.htm 全球資訊網。
    8. W. R. Grove, , The Philosophical Magazine, 16 (1840) 478-482.
    9. B. Chpaman, J. Wiley and Sons, New York, 1980.
    10. G. Barillaro,z A. Nannini, and F. Pieri, , Journal of The Electrochemical Society, 149 ~3! C180-C185 ~2002.
    11. R. L. Smith and S. D. Collins, J. Appl. Phys., Vol. 71, No. 8, 15 April 1992.
    12. J.M. Macak, H. Tsuchiya 1, A. Ghicov, K. Yasuda , R. Hahn, S. Bauer, P. Schmuki ,Current Opinion in Solid State and Materials Science 11 (2007) 3–18.
    13. D. Kim, F.S Stein, R.Hahn, P.Schmuki, ,Electrochemistry Communications 10 (2008) 1082–1086.
    14. F. L. Coz, L. Arurault, L. Datas, ,materials characterization 61(2010)283– 288.
    15. R. Bertholdo, M.C. Assis, P. Hammer, S.H. Pulcinelli, C.V. Santilli, Journal of the European Ceramic Society 30 (2010) 181–186.
    16. M. Yang, Nabeen K. Shrestha, P. Schmuki, , Electrochemistry Communications 11 (2009) 1908–1911.
    17. J.M. Macak, H. Tsuchiya 1, A. Ghicov, K. Yasuda , R. Hahn, S. Bauer, P. Schmuki,,Current Opinion in Solid State and Materials Science 11 (2007) 3–18.
    18. S. Berger, H. Tsuchiya, A. Ghicov, and P. Schmuki, APPLIED PHYSICS LETTERS 88, 203119 (2006).
    19. C. G. Granqvist, A. Azens, J. Isidorsson, M. Kharrazi, L. Kullman, T. Lindström, G.A. Niklasson, C.-G. Ribbing, D. Rönnow, M. Strømme Mattson, M. Veszelei, , Journal of Non-Crystalline Solids, Vol.218, p.273-279 (1997).
    20.J.R. Platt,j. Chem.Phys.34(1961) 862.
    21. S.K.Deb,Appl.Optics,supp., 3,p.192,1969.
    22. S. K. Deb, U. S. Patent, No. 3,521,941 (1970).
    23.P. M. S. Monk,R. J. Mortimer,D. R. Rosseinsky, Electrochromism and electrochromic devices.
    24. 何主亮、邱明傑,"反應性磁控濺鍍氧化鎢薄膜氧含量對其致色變性質之影響",真空科技十二卷三期 (1999) 4-15。
    25. D.N.Buckley, L.D.Burke, J.K.Mukahy, J.Chem.Soc.,Faraday 72,Np.1 (1976) 9392.
    26. F.Jiang *, T.Zheng, Y.Yang, Journal of Non-Crystalline Solids 354 (2008) 1290–1293.
    27. K. Bange, Solar Energy Materials & Solar Cells, Vol.58, p.1-131 (1999).
    28. M. Ani, Corrosion Science 48 (2006) 4158–4173.
    29. A. Watcharenwong , W. Chanmanee , N. R. de Tacconi , C. R. Chenthamarakshan , P . Kajitvichyanukul , K. Rajeshwar, Journal of Electroanalytical Chemistry 612 (2008) 112–120.
    30.E. Lassner, W. D. Schubert, Tungsten properties,chemistry,technology of the Element,Alloys,and chemical compounds.
    31.A. J. Bard, L. R. Faulkner, Electrochemical Method Fundamentals and Applications.
    32. C. Sunseri, F. Di Quarto, A. DipaolaI, J. Appl Electrochemistry. 10 (1980) 669-675.
    33.B. W. Faughnan, R.S. Crandall, P. M. Heyman,RCA Rveview,Vol.36,(1975),p.177~197.
    34.C. Starr, C. A. Evers, L. starr, Biology:concepts and applications.
    35.D. R. Gaskell, Introduction To The Thermodynamics Of Materials.
    36.Q. Zhong, J. R. Dahn, K. Colbow, The American Physical Society.
    37. Q. Cai, lL. Yang a, Y. Yu , Thin Solid Films 515 (2006) 1802–1806.

    無法下載圖示 校內:2020-01-01公開
    校外:不公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE